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Abstract

The ability to selectively attend to speech in adverse listening environments

plays a key role in human communication. However, listening to speech in

everyday multi-talker environments can be challenging for hearing-impaired

listeners, even when wearing modern hearing aids. Studies in normal-hearing

listeners have shown that it is possible to decode which of two speakers a listener

is attending to from scalp electroencephalography (EEG). This has led to the

idea that EEG-based brain-computer interfaces (BCIs) could be integrated into

hearing assistive devices to help hearing-impaired listeners by selectively am-

plifying attended sound sources. To accomplish this, however, single-trial EEG

measures of attention to speech must first be investigated in hearing-impaired

listeners, in everyday listening scenarios, and under different task demands.

This thesis explored single-trial cortical EEG correlates of selective attention

to speech. In the first study, the influence of sensorineural hearing loss on

cortical EEG responses to tones and to naturalistic speech was investigated. It

was shown that hearing impairment enhances the fidelity of the low-frequency

cortical EEG entrainment to envelopes of simple tones and to envelopes of

attended speech streams. For loudness-matched competing speech streams,

the attended target could be classified from single-trial EEG responses with

equally high classification accuracies in normal- and hearing-impaired listen-

ers. The second study explored single-trial EEG correlates of selective auditory

attention to speech in reverberant, multi-talker environments. It was shown

that the attentional selection of normal-hearing listeners could be decoded

from single-trial EEG data with equally high classification accuracies in both

anechoic- and reverberant listening environments. The third study analyzed

how different constraints on EEG-based stimulus-response models influence

the predictive power of the models. The results from this study suggested that

stimulus-response model regularization is important for maintaining high clas-

sification accuracies with backward decoding models. The fourth study investi-

gated if working memory demands affect single-trial EEG correlates of speech
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envelope processing. Using an auditory n-back task, it was found that working

memory load can affect spatio-spectral EEG power in the theta and alpha bands

and that EEG measures of speech envelope entrainment decrease with high

task load. The fifth study investigated whether EEG-based attention decoding

can be achieved in a real-time closed-loop BCI system. Here, it was shown that

a hearing-impaired listener was able to selectively amplify attended speech

using a closed-loop EEG-based attention decoding BCI system. Overall, the

work presented in this thesis suggests that EEG-based attention decoding may

have relevance for future BCI systems.



Resumé

Evnen til selektivt at lytte til tale i komplekse lydmiljøer spiller en vigtig rolle

for menneskets evne til at kommunikere. Selv med høreapparater kan høre-

hæmmede dog have problemer med at forstå tale når flere taler på samme tid.

Nyere studier med normalthørende lyttere har vist, at det er muligt at afkode

hvilken lytter man fokuserer på fra elektroencefalografi (EEG). Det har åbnet

op for muligheden for at inkorporere EEG-baserede brain-computer interface

(BCI) systemer i høreapparater, således at høreapparaterne selektivt kan for-

stærke den lydkilde, som den hørehæmmede bruger fokuserer på. For at det

overhovedet skulle kunne lade sig gøre, bliver man dog nødt til at undersøge,

hvordan EEG korrelater af selektiv opmærksomhed på tale påvirkes af høretab,

af udfordrende lyttemiljøer samt af lytterens kognitive bearbejdning af tale.

Denne afhandling undersøgte EEG korrelater af selektiv auditiv opmærk-

somhed på tale. I det første studie blev det undersøgt, hvordan et sensorineuralt

høretab påvirker kortikalt EEG målt fra personer, der lytter til enten toner eller

til tale. Det blev her vist, at et høretab kan påvirke måden, hvorpå EEG signaler

synkroniserer til tone-sekvenser og til envelopes af talesignaler. Det blev vist, at

man fra EEG optagelser i scenarier med to simulatane lydstyrke-balancerede

talere kunne afkode hvilken taler, lytterne fokuserede på. Tilsvarende høje klassi-

fikationsnøjagtigheder blev fundet i de normalthørende og i de hørehæmmede

forsøgspersoner. Det andet studie udforskede EEG korrelater af selektiv auditiv

opmærksomhed i lydmiljøer med to eller flere talere og forskellige grader af

rumklang. Det blev her vist, at det er muligt at afkode selektiv auditiv opmærk-

somhed fra EEG med tilsvarende høje klassifikationsnøjagtigheder i simulerede

rum med efterklang samt i lydmiljøer med baggrundsstøj. Det tredje studie

undersøgte, hvordan forskellige typer af regularisering påvirker EEG-baserede

stimulus-respons modellers evne til at prædiktere data. Resultaterne pegede i

retning af, at det var vigtigt at regularisere afkodningsmodeller for at opnå høje

klassifikationsnøjagtigheder. Det fjerde studie undersøgte, hvorvidt forskellig

belastning af arbejdshukommelsen påvirker EEG korrelater af tale-envelope
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bearbejdning. Ved brug af en auditiv n-tilbage opgave blev det her vist, at det

at bebyrde arbejdshukommelsen kan påvirke EEG effektmål i theta og alpha

frekvensbånd, men på samme tid også påvirke måden, hvorpå EEG signaler syn-

kroniserer til tale envelopes. Det femte studie undersøgte, hvorvidt EEG-baseret

afkodning af auditiv opmærksomhed kunne opnås i et real-tids closed-loop

BCI system. Det blev her vist, at en hørehæmmet bruger var i stand til selektivt

at forstærke enkelte lydkilder ved brug af det EEG-baserede closed-loop BCI

system. Samlet set indikerer resultaterne fra denne afhandling, at EEG-baseret

afkodning kan have relevans for fremtidige BCI systemer.
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1
General introduction

In everyday multi-talker situations, listeners rely on selective attention to focus

on one particular speech stream and ignore irrelevant ones. Auditory atten-

tion may enhance the cortical responses to sounds that are attended relative

to ignored ones (e.g., Hillyard et al., 1973; Kaya and Elhilali, 2017; Mesgarani

and Chang, 2012; Mesgarani et al., 2010; Woldorff et al., 1993). Which of two

competing speech streams a listener is attending to may even be decoded from

short segments of unaveraged electroencephalogram (EEG) data (Mirkovic et al.,

2015; O’Sullivan et al., 2014). This opens the possibility of using EEG in brain-

computer-interfaces (BCIs) that decode the attentional selection of listeners in

multi-talker scenarios and enhance attended sound sources. Yet, many uncer-

tain aspects of this idea remain to be resolved. Although EEG-based attention

decoding may be achieved in relatively simple listening scenarios, e.g. with two

competing talkers (Mirkovic et al., 2015; O’Sullivan et al., 2014), it is unclear

how robust such decoding is in everyday listening environments where speech

signals are corrupted by reverberation and background noise. Normal-hearing

listeners are able to navigate almost effortlessly through complex auditory en-

vironments, but little is known about the cortical processes underlying this

perceptual robustness. Hearing-impaired listeners are commonly challenged

in complex listening situations, even when wearing hearing aids, but it is not

clear how hearing impairment affects cortical EEG responses to sound mix-

tures. It is also unclear how cognitive aspects, such as mental effort or working

memory load, influence single-trial EEG measures of speech processing. Finally,

real-time acoustic feedback that enhances the attended sound stream in a BCI

context constitutes a feedback loop between the changed acoustic input and

the corresponding EEG correlates of brain processing. The dynamics of such a

‘closed-loop’ system are not yet understood and it is unclear to what extent a

hearing-impaired person can profit from such a system.

The aim of this thesis was to explore these questions. The thesis is divided

in seven main chapters, as listed below:

1



2 1. Introduction

Chapter 2 provides an introduction to the concept of stimulus-response

models that can be used to analyze single-trial EEG responses to naturalistic

continuous speech.

Chapter 3 examines the effects of hearing-impairment on single-trial EEG

measures of auditory attention. Selective speech-listening tasks are considered.

Moreover, this chapter considers EEG experiments with synthetic sounds to

probe temporal auditory processing abilities. Results from these experiments

are compared to behavioral measures of speech intelligibility and basic spectro-

temporal processing.

Chapter 4 uses stimulus-response models to explore the single-trial EEG

correlates of selective auditory attention to speech in reverberant, multi-talker

environments. This is investigated using simulations of real-world rooms pre-

sented to a cohort of normal-hearing listeners during EEG recordings and a

selective attention task.

Chapter 5 examines how different constraints on the stimulus-response

models influence the predictive power of the models. Specifically, it is explored

how different regularization techniques influence the ability to map between

envelopes of attended speech and continuous EEG responses using stimulus-

response models. In this study, the model performance is evaluated both in

terms of correlation coefficients between model predictions and target data,

but also how robustly the models can discriminate between the attended and

unattended speech.

Chapter 6 investigates whether working memory demands affect the EEG

correlates of speech envelope processing when listening to speech embedded

in noise. An auditory n-back working memory task with spoken digit streams is

considered where listeners are asked to report whether each spoken digit was

similar to the one presented n items earlier during EEG recordings.

Chapter 7 presents results from a BCI case study that investigates whether

EEG-based attention decoding can be achieved in a real-time BCI system. Re-

sults from closed-loop and open-loop BCI experiments are presented for one

older hearing-impaired listener performing an auditory attention-switching

task. The subject is also interviewed to evaluate the subjective experience of

closed-loop attention steering.

Chapter 8 summarizes the main findings of the present work and discusses

their potential implications for BCI applications.

Appendix A describes challenges associated with the interpretation of results



3

from encoding- and decoding analyses.
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2
Characterizing attention-driven M/EEG

entrainment using stimulus-response
models

Electroencephalography (EEG) and magnetoencephalography (MEG) have been

widely used to study the neuroelectric and neuromagnetic correlates of audi-

tory attention. Various studies have focused on effects of attention on M/EEG

responses to discrete, repeated sounds (see e.g., Hillyard et al., 1973; Näätänen,

2018; Woldorff et al., 1993) or to periodically modulated sounds (Bidet-Caulet

et al., 2007; Ross et al., 2004).

When using repetitive short stimuli, simple averaging procedures can be

used to isolate stimulus-related neural activity that is time-locked to the discrete

events. Such a procedure was employed by Hillyard et al. (1973), who recorded

EEG activity from subjects listening to two simultaneous streams of tone pips

presented dichotically with irregular inter-tone-intervals. The tone pips pre-

sented to the left-ear had higher carrier frequencies than those presented to

the right-ear and both tone streams included randomly placed tone deviants.

When instructing the listeners to count tone deviants in one ear and to ignore

sound input from the other ear, the authors found that event-related potentials

evoked by the attended tones elicited a larger N1 negativity (at a latency of

around 100 ms) than those evoked by ignored tones. Since then, various studies

have investigated how attention modulates the cortical processing of discrete,

repeated sounds (Näätänen, 2018; Woldorff et al., 1993). However, consider-

ing the complexity of the sounds the auditory system is exposed to in natural

environments, it is not clear whether effects observed with such discrete and

repeated stimuli may generalize to more naturalistic listening scenarios (e.g.,

Theunissen and Elie, 2014).

More recently, researchers have considered M/EEG responses to complex

naturalistic sounds, such as speech (Ahissar et al., 2001; Ding and Simon, 2012a;

Luo and Poeppel, 2007; Mesgarani and Chang, 2012; O’Sullivan et al., 2014). One

5
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way of identifying M/EEG response patterns related to the processing of com-

plex sounds is to look for M/EEG response consistencies across repeated stimuli

(Dmochowski et al., 2014; Hasson et al., 2004, 2012; Luo and Poeppel, 2007;

de Cheveigné et al., 2018b). Another approach is to use statistical modelling

techniques to identify stimulus- or task-related activity in M/EEG responses to

sounds that are presented only once (Lalor and Foxe, 2010; Lalor et al., 2009b).

This chapter reviews such modelling techniques that can provide insights into

what is encoded in ”single-trial” M/EEG responses to natural sounds. These

model-driven approaches differ from other M/EEG analyses that focuses on

only M/EEG response properties in the context of well-defined task- or stimulus

manipulations. The model-driven approaches described here are typically re-

ferred to as stimulus-response models as they model the functional relationship

between the sound stimulus and the neural response it elicits. These models

have been found to be useful tools for studying how task-driven attention affects

M/EEG responses to sound mixtures.

A stimulus-response relationship can be analyzed with encoding or decod-

ing models. Whereas an encoding model attempts to predict a neural response

from the stimulus input, the decoding model reverses the problem and attempts

to infer information about the stimulus (or task) from the neural response. These

are related modelling approaches, but with important differences (Haufe et al.,

2014; Holdgraf et al., 2017; Kriegeskorte, 2011; Mesgarani et al., 2009; Naselaris

et al., 2011; Weichwald et al., 2015). The goal of both modelling approaches is

to develop predictive models, i.e. models that are capable of predicting novel

data. The following subsections provide a brief introduction to encoding and

decoding models, with emphasis on models that provide a map between sound

features and neural responses.

2.1 Encoding models

A standard technique in auditory electrophysiology is to use receptive field mod-

els to characterize the selectivity of single neurons to spectrotemporal features

(e.g., Aertsen and Johannesma, 1981; Theunissen et al., 2001). These models

have been used to characterize the responses of auditory neurons to sounds as

a linear transformation of the corresponding stimulus spectrogram (Aertsen

and Johannesma, 1981; Atencio et al., 2008; Fritz et al., 2003; Woolley et al.,

2005). The kernel that describes the mapping from the sound spectrogram to
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the neural response has in such cases been referred to as the spectro-temporal

receptive field (STRF), and it characterizes how changes in the time-frequency

characteristics of the sound spectrogram are expected to affect the neural re-

sponse.

It has recently been demonstrated that model-based approaches similar

to receptive field models are relevant for the analysis of M/EEG data (Burns

et al., 2013; Lalor and Foxe, 2010; Lalor et al., 2009b). M/EEG responses evoked

(or induced) by repetitive transient sounds typically have distinct shapes with

components that can be grouped by their post-onset latencies. This has led

to the idea that averaged M/EEG responses to repeated transient sounds may

reflect a convolution between standardized ”unitary response functions” and

stimulus-driven discharge patterns (Dau, 2003; Goldstein Jr and Kiang, 1958;

Rønne et al., 2012). This has inspired researches to use systems engineering

approaches to characterize how features of continuous synthetic sounds relate

to M/EEG responses (Lalor and Foxe, 2010; Lalor et al., 2009b). Intriguingly, it

has been shown that similar methods can be applied to more complex stimuli,

such as speech, to characterize how speech features relate to M/EEG responses

in humans, and how their representations in M/EEG responses are affected

by selective attention. The models have in this context been referred to as

”encoding models” or ”forward models”. There exists a variety of different en-

coding model formulations that provide a mapping from the sound input to the

M/EEG output. A linearized M/EEG encoding model, operating on a stimulus

feature representation S (t , n ), provides a forward map from S (t , n ) to an M/EEG

response R (t , n ) in the following way:

R̂ (t , n ) =
F
∑

f

M
∑

i

S (t −τi , f )Hn (τi , f ), (2.1)

where R̂ (t , n ) is the estimated M/EEG response recorded at channel/sensor n =

1, ..., N at time t = 1, ..., T , S (t , f ) is a representation of the time-varying stimulus,

τ= {τ1,τ2, ...τM } are the time-lags of interest and Hn contains the linear filter

coefficients (that would correspond to the STRF in the context of receptive

field models). Eq. 2.1 predicts the response R (t , n ) at each channel/sensor n

independently.
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2.2 Decoding models

In contrast to encoding models, decoding models directly learn features in

the multi-dimensional M/EEG data (e.g. spatial patterns) to infer information

about the stimulus (or the task). Depending on the problem at hand, one usually

distinguishes between different types of decoding models. When inferring about

discrete variables, the decoding problem is a classification problem. Another

type of decoding approach that has been widely used in electrophysiology

is ”stimulus reconstruction”, which treats the neural decoding problem as a

regression problem rather than a classification problem. In this case, the desired

output of the decoder is a continuous variable with one or more dimensions.

The goal of stimulus reconstruction is to accurately reconstruct features in the

sound input from the neural responses (Mesgarani and Chang, 2012; Mesgarani

et al., 2009; Naselaris et al., 2009). As for the encoding models, these models can

both be linear or nonlinear. A linearized M/EEG stimulus reconstruction model

that attempts to reconstruct a sound feature S (t , f ) from a multi-dimensional

M/EEG response, R (t , n ), to a sound stimulus takes the form:

Ŝ (t , f ) =
N
∑

n

M
∑

i

R (t −τi , n )H f (τi , n ), (2.2)

Here, Ŝ (t , f ) is the neural reconstruction that estimates S (t , f ) and H f is the

kernel that maps neural response back to the features of the sound input. This

model reconstructs S (t , f ) independently at each dimension f = 1, ..., F .

The linearized stimulus reconstruction models offer a useful tool for visual-

izing, in the stimulus feature domain, how different task contexts may ”shape”

the neural reconstructions. In a study, Mesgarani and Chang (2012) trained a

stimulus reconstruction model that was capable of reconstructing spectrograms

of attended speech from electrode responses to single-talker stimuli recorded

directly from the surface of the temporal lope of epileptic patients. Next, the

authors instructed listeners to listen selectively to one of two competing talkers.

It was found that the stimulus reconstruction models trained on the data from

single-talker scenarios could robustly reconstruct spectrograms of attended

speech in two-talker listening conditions, suggesting a clear and decodable

effect of attention on the neural reconstructions. In this way, the reconstruction

model could, in the stimulus feature domain, demonstrate how task-driven

attention may affect the neural responses.
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Figure 2.1: Using stimulus-response models to ask questions about what stimulus-related infor-
mation that is represented in neural data under different listening tasks. The encoding models
attempt to explain variance in the neural responses from stimulus or task-related information.
In contrast, the stimulus-reconstruction models reverses the problem an attempt to infer infor-
mation about stimulus from the neural responses.

2.3 Estimating model parameters and model validation

The goal of predictive encoding and decoding models is to find a set of model

parameters, H , that provide a robust stimulus-response mapping between

S (t , f ) and R (t , n ) for a given model class that may be linear or nonlinear. To

do so, it is necessary to define a loss function that can characterize the lack

of fit between the model predictions and the actual target variable (Wu et al.,

2006). Since S (t , f ) and R (t , n )will have different statistical properties, there

may be some loss functions that are better suited for encoding analyses than for

decoding analyses and vice versa. A commonly applied loss function is a square

loss. During learning, the objective is to find a set of parameters that minimize

the loss function. It is, for example, possible to use ordinary least squares (OLS)

to estimate a set of filter parameters that minimizes the residual sum of squares

between the model predictions and target data over the training set. To see this,

it is convenient to express the models in Eq. 2.1 and Eq. 2.2 in matrix form:

ÒY = X̃ Wencoder (2.3)

ÒX = Ỹ Wdecoder

where Y ∈ RT×N is a matrix that contains the multi-dimensional neural re-

sponse, Ỹ ∈RT×N ·M is a matrix that contains Y augmented to include multiple

time delays {τ1,τ2, ...τM } and Wdecoder contains the linearized decoding filter
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coefficients (Mesgarani et al., 2009). Similarly, X ∈RT×F is a matrix that con-

tains the stimulus feature, X̃ ∈RT×F ·M is a matrix that contains X augmented to

include multiple time lags and Wencoder contains the linearized encoding filter

coefficients. Henceforth, it will be assumed that the data have been standard-

ized. The OLS estimators in this case takes the form:

Wencoder, OLS = argmin
W

�

�

Y − X̃ W
�T �

Y − X̃ W
�

�

(2.4)

=
�

X̃ T X̃
�

X̃ T Y

Wdecoder, OLS = argmin
W

�

�

X − Ỹ W
�T �

X − Ỹ W
�

�

=
�

Ỹ T Ỹ
�

Ỹ T X ,

Here, it has (for the moment) been assumed that the regressor matrices in both

cases have full rank. From these equations, it can be seen that the decoding

model takes correlations among M/EEG channels over a finite range of lags

into account when estimating X (due to the term Ỹ T Ỹ ), whereas the encoding

model takes statistical regularities in the sound features into account (due to

the term X̃ T X̃ ) (Holdgraf et al., 2017). This has consequences for both the

stimulus-response mapping and for the interpretation of the model parameters

(see Appendix A).

It is often necessary to impose regularization constraints on the model

parameters by adding a complexity penalty to the loss function, which can

stabilize the regression weights and prevent overfitting. This may be the case for

linear regression models in scenarios where the regressor is a high-dimensional,

low-rank matrix that has a poorly estimated covariance matrix given limited

amounts of training data. How different regularization methods may affect the

ability of linearized stimulus-response models to map between envelopes of

attended speech and multi-channel EEG responses is explored in more details

in Chapter 4 (from Wong et al., 2018).

A straightforward and effective way of seeking models that better generalize

to novel data is by imposing an L2 size constraint on the model coefficients,

which yields the so-called Ridge estimator:
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Wencoder, Ridge = argmin
W

�

�

Y − X̃ W
�T �

Y − X̃ W
�

+λW T W
�

(2.5)

=
�

X̃ T X̃ +λI
�

X̃ T Y

Wdecoder, Ridge = argmin
W

�

�

X − Ỹ W
�T �

X − Ỹ W
�

+λW T Wd

�

=
�

Ỹ T Ỹ +λI
�

Ỹ T X ,

where λ is the regularization parameter that defines the extend to which the

model coefficients (smoothly) are shrunk to zero and to one another (Hastie et

al., 2001). This is here achieved by smoothly shrinking low-variance directions

in the regressor. In certain scenarios it can be desirable to promote sparsity in

the solution. This can be achieved by imposing an L1 (Lasso) penalty on the

filter coefficients:

Wencoder, Lasso = argmin
W

�

�

Y − X̃ W
�T �

Y − X̃ W
�

+λ||W ||1
�

(2.6)

Wdecoder, Lasso = argmin
W

�

�

X − Ỹ W
�T �

X − Ỹ W
�

+λ||W ||1
�

This is sometimes referred to as the Lasso estimator. Here, λ controls how many

of the filter coefficients that are set to zero. The three aforementioned estimators

will later be considered in an example (Appendix A).

Whenever the model has additional free parameters (e.g., regularization

parameters, such as λ), the additional free parameters can be tuned by cross-

validation to seek models with lowest generalization error. One way of tuning

the regularization parameters is by splitting the data into a training set, a vali-

dation set and a test set, over which the training set is used to fit the models for

different regularization parameters and the validation set is used to tune the

regularization parameter. Finally, once a set of parameters has been selected, it

is important to obtain unbiased estimates of the model performance. This can

be done by evaluating how well the model can predict held-out data not used

for model fitting or parameter tuning.

2.4 Factorized and parameterized models

To develop predictive stimulus-response models it can be necessary to impose

constraints on model parameters. One way of efficiently reducing the space
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encoding model parameters is by putting constraints on the model shape via fac-

torizing and parameterizing (Kay et al., 2013; Thorson et al., 2015). For instance,

for a given STRF model, WSTRF ∈RF ×M , it is possible to approximate STRF as the

outer product of a spectral filter, Ws ∈RF ×1, and a temporal filter, Wt ∈R1×M .

This reduces the number of free parameters in the model from F ×M to F +M .

To reduce the space of the model parameters even more, the spectral and tem-

poral filters can be parameterized. Such a model parameterization will later

be considered in an example in Chapter A. In this example, the STRF is ap-

proximated as the outer product of a spectral filter, Ws =
�

ws( f1) ... ws( fF )
�T

(parameterized by a single Gaussian function with a center frequency, fµ0
, and

a bandwidth, σ f0
) and a temporal filter, Wt =

�

wt (τ1) ... wt (τM )
�

(parame-

terized by three Gaussian functions each centered around time lag τµ j
and with

widthsστ j
, j = 1, 2, 3):

WSTRF =WsWt, (2.7)

ws( fi ) =
1

σ f0

p
2π

exp

 

−

�

fi − fµ0

�2

2σ f0
2

!

wt(τi ) =
3
∑

j=1

A j
1

στ j

p
2π

exp



−

�

τi −τµ j

�2

2στ j
2





Such model constraint can be viewed as a form of model regularization. The

model parameters can for such models be estimated using nonlinear optimiza-

tion algorithms.

2.5 Hybrid encoding-decoding models

Since Y ∈RT×N and X ∈RT×F both can be high dimensional and have complex

statistical properties, multivariate models can be effective for learning transfor-

mations that can be applied to both Y and X to better reveal statistical stimulus-

response dependencies. One way of doing so is by using canonical correlation

analysis (CCA) (Biessmann et al., 2011; Dmochowski et al., 2017; de Cheveigné

et al., 2018a). Assume for now that X contains a spectrogram representation

of a stimulus and that Y contains a multi-channel EEG response. Similarly,

assume that X̃ is a matrix that contains X augmented to include multiple time
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delays. A multivariate CCA model can here simultaneously learn spectrotem-

poral filters We =
�

ae1
ae2

...
�

and spatial EEG filters Wd =
�

bd1
bd2

...
�

such that the correlation between X̃ aei
and Y bdi

is successively maximized

for each set of filters i = 1,2, ... while simultaneously being uncorrelated with

previous projections. This has been referred to as a hybrid encoding-decoding

model as it simultaneously learns encoding filters and decoding filters. In the

aforementioned example, the model coefficients can be estimated from:

{We, CCA, Wd, CCA}= argmax
We ,Wd

�

tr
�

W T
e X̃ T Y Wd

��

(2.8)

s.t. W T
e X̃ T X̃ We = I

W T
d Y T Y Wd = I

It can be shown that a solution to this problem can be found by solving a gen-

eralized eigenvalue problem (Biessmann et al., 2011; Borga, 1998). A simple

formulation of CCA is presented in de Cheveigné et al., 2018b, which involves

whitening each matrix, X̃ and Y (by applying principal component analysis

and scaling each component to be unit norm), concatenating the whitened

matrices and applying them to another PCA. One way of constraining the model

parameters is to discard PCs with the lowest variance after the initial PCA. This

can reduce the risk of overfitting. Such a CCA model will later be considered

in an example in Appendix A. Moreover, Chapter 7 considers a CCA model for

real-time auditory attention decoding. In this case, a dyadic filterbank is applied

to EEG/audio data to put constraints on the spectral representations and reduce

the number of model parameters.

2.6 Linearized models and linearization transforms

The relationship between sound pressure waves and neural activity is nonlin-

ear due to the various nonlinear processing stages along the auditory pathway.

When considering stimulus-response models that are linear in their coefficients,

it is therefore necessary to transform the sound stimulus into a stimulus repre-

sentation S (t , f ) that is assumed to be linearly related to the response (Aertsen

and Johannesma, 1981; Wu et al., 2006). When the transformation from the

sound stimulus to the stimulus representation is nonlinear, the encoding and de-
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coding models described in Eq. 2.1 and 2.2 are both considered to be linearized

stimulus-responds models (Naselaris et al., 2011). The nonlinear transforma-

tions of sound stimuli (or feature extraction schemes) are often motivated by

a priori knowledge about what sound features that may drive (or be reflected

in) the neural responses (Broderick et al., 2018; Di Liberto et al., 2015; Ding and

Simon, 2012a), but they can also be learned using data-driven approaches (Kell

et al., 2018; Yamins and DiCarlo, 2016).
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The influence of a sensorineural hearing

loss on cortical auditory EEG
entrainment during selective listeninga

Abstract

Listeners with age-related sensorineural hearing loss (presbycu-

sis) often struggle to follow speech in noisy environments, even

when reduced audibility has been compensated for, e.g., by a hear-

ing aid. Selectively attending to a speech stream in a competing

talker scenario is known to entrain low-frequency cortical activity

(<10 Hz) to fluctuations in the attended speech signal in normal-

hearing listeners, but it is unclear if and in which way a peripheral

hearing loss may affect such entrainment. Here, we used psychoa-

coustics and electroencephalography (EEG) to examine effects of

sensorineural hearing loss on EEG correlates of attention-driven

speech envelope entrainment in cortex. Behaviorally, presbycutic

hearing-impaired (HI) listeners showed degraded speech-in-noise

sentence reception thresholds and a reduced temporal acuity com-

pared to age-matched normal-hearing (NH) controls. During EEG

recordings, we used a selective attention task with spatially sepa-

rated speech streams where both NH and HI listener groups showed

equally good speech recognition. Cortical envelope entrainment

was found to be enhanced in HI listeners, both for the attended

speech stream, but also for speech-in-quiet and periodic tone se-

quences in passive listening conditions. Suppression of the ignored

stream relative to the attended one was found to be similar in the

a This chapter is based on: Fuglsang, S. A.; Marcher-Rørsted, J.; Dau, T.; Hjortkjær, J. H (in prepa-

ration). ”The influence of a sensorineural hearing loss on cortical auditory EEG entrainment

during selective listening”.

15
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two groups, allowing for the attended talker to be classified from the

EEG data with equal high classification accuracy. Despite the robust

attention-modulated entrainment, the HI-listeners rated the com-

peting speech task to be more challenging. Overall, while degraded

temporal processing and an enhanced envelope representation may

degrade selective listening at more challenging signal-to-noise ra-

tios, HI listeners can engage attention to modulate cortical speech

envelope entrainment responses when perceptual segregation of

the speech signal is intact.

3.1 Introduction

Following the voice of a single speaker among competing speakers can be chal-

lenging for listeners with a sensorineural hearing loss (SNHL). It has been argued

that a SNHL may interfere with selective auditory attention and cause deficits

in the ability to ignore distracting sound sources (Dai et al., 2018; Petersen

et al., 2016; Shinn-Cunningham and Best, 2008; Shinn-Cunningham, 2017).

Physiological studies have demonstrated that a SNHL may, in fact, enhance

subcortical and cortical envelope coding (Kale and Heinz, 2010, 2012; Millman

et al., 2017; Zhong et al., 2014). It is conceivable that enhanced neural envelope

coding in hearing-impaired (HI) listeners exaggerates perceived envelope fluc-

tuations in amplitude modulated sounds (e.g., Moore et al., 1996; Wiinberg et al.,

2018), but may conversely disrupt the segregation of speech from background

noise (Millman et al., 2017; Moore and Glasberg, 1993). Although cortical enve-

lope entrainment responses have been found to be modulated by attention in

normal-hearing (NH) listeners, it is less clear how attention-modulated cortical

auditory entrainment responses are affected by a SNHL.

Enhanced neural envelope coding in the aging auditory system has previ-

ously been reported (Goossens et al., 2016; Parthasarathy et al., 2019; Presacco

et al., 2016a,b; Walton et al., 2002). SNHL may be more prevalent in older lis-

teners (Agrawal et al., 2008; Cruickshanks et al., 1998; Davis, 1995), and older

listeners can show degraded speech perception despite normal audiometric

thresholds (Dubno et al., 1984; Füllgrabe and Rosen, 2016). This may be ascribed

to age-related changes in central- and cognitive factors (Caspary et al., 2008;

Frisina and Frisina, 1997; Füllgrabe and Rosen, 2016; Henry et al., 2017; Krull

et al., 2013; Peelle et al., 2009; Pichora-Fuller, 2003; Presacco et al., 2016a,b), or
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to age-related peripheral deficits (Sergeyenko et al., 2013). The prevalence of

peripheral deficits may increase with age (Sergeyenko et al., 2013), and dam-

ages to the auditory periphery may affect sound-evoked cortical responses,

but may have little impact on audiometric thresholds (Chambers et al., 2016).

Age-related peripheral deficits and age-related changes in central- or cognitive

factors can thus be difficult to dissociate in studies on cortical auditory pro-

cessing (Humes et al., 2012). To date, it is not clear whether a SNHL further

contributes to already exaggerated speech-evoked cortical responses in older

listeners during selective listening (Presacco et al., 2016a,b).

The present study sought to further elucidate how a SNHL impacts cortical

auditory envelope entrainment responses when listening selectively to one of

two competing speakers. In an attempt to better separate age-related effects

from SNHL-related effects, we recruited age-matched HI and NH listeners. We

employed a selective auditory attention EEG experiment with two spatially sep-

arated speech streams that were loudness matched. Using stimulus-response

models to assess relations between the envelopes of individual speech streams

and low-frequency EEG responses, we show that the fidelity of the low-frequency

cortical EEG entrainment to envelopes of attended speech is enhanced in the

HI listener group, and that both listener groups show attentional modulations

of the EEG envelope entrainment responses in two-talker listening conditions.

In addition, we show that an SNHL enhances the fidelity of the low-frequency

EEG phase-locking to envelopes of tone sequences unfolding on fast (gamma

range) and slow (theta range) time scales. The findings provide insights into the

effects of SNHL on attention-driven cortical envelope entrainment and suggest

that peripheral deficits do not per se hinder attentional modulations of cortical

auditory entrainment responses.

3.2 Materials and methods

3.2.1 Participants and audiometry

Forty-five subjects participated in this study. Hearing-impaired (HI, N = 22,

9 females, 21 right handed) and normal-hearing (NH, N = 23, 16 females, 19

right handed) subjects between 51 and 76 years of age participated. The HI and

NH groups were matched in age (t (41.982) = 1.5947, p = 0.1183; NH: mean age

63.14±7.26; HI: mean age 66.59±7.11). The HI subjects were selected to have a
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symmetric steeply sloping high-frequency hearing loss indicating presbyacusis

(Bisgaard et al., 2010). For the NH subjects, the inclusion criterion was audio-

metric thresholds within 20 dB of normal hearing level (HL) at frequencies up

to 2 kHz and within 35 dB HL at frequencies above 2 kHz. All selected subjects

had symmetric audiograms, defined as less than 15 dB difference between ears

at two or more neighbouring frequencies. Bone-conduction thresholds were

measured at 0.5, 1 and 2 kHz. Subjects with air-bone gaps above 10 dB at any

audiometric frequency were excluded from the analysis. Tympanometry and

otoscopy screening was used to assure normal middle- and outer ear function.

One of the NH subjects was excluded from the analysis because EEG data could

not be obtained.

All subjects provided written informed consent to participate. The experi-

ment was approved by the Science Ethics Committee for the Capital Region of

Denmark (protocol no. H-16036391) and was conducted in accordance with

the Declaration of Helsinki.

3.2.2 Behavioral hearing profiles

Speech perception in noise

A Danish hearing-in-noise test (DaHINT, Nielsen and Dau, 2009) was used to

estimate sentence-reception thresholds (SRT). Listeners were presented with

sentences in stationary noise spectrally matched to the speech and asked to re-

peat the sentence. The audio stimuli were presented diotically using Sennheiser

HD650 headphones at a fixed noise level of 65 dB sound pressure level (SPL) in

a double-walled sound booth. The level of the speech signal was varied adap-

tively to identify speech reception thresholds for each subject. SRTs indicate

the signal-to-noise ratio (SNR) at which the listeners correctly recognizes 50%

of the presented sentences. The speech reception thresholds were averaged

across three repetitions of a list with 20 sentences.

Temporal processing abilities

A psychoacoustic tone-in-noise detection test (adapted from Larsby and Ar-

linger, 1999) was used to assess temporal processing acuity. A pulsating pure

tone (500 Hz, 275 msec duration, 2.22 pulses/sec) was presented in different

background noise conditions. First, the threshold for tone detection in wide-

band noise (with a passband corresponding to six equivalent rectangular band-
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width (Moore, 1986) around the target tone frequency) was measured. Next, a

temporal gap of 50 ms centered around the tone was introduced. The temporal

masking release, i.e. the difference in detection thresholds between the no-gap

and gap conditions, was then calculated as a measure of listeners abilities to

utilize temporal fluctuations in the noise masker for improved detection. The

noise was presented at a fixed level of 55 dB SPL and the level of the target

tone was varied using a Békésy tracking procedure to identify the thresholds.

The subjects performed each condition (no gap, temporal gap) twice for each

ear. The stimuli were presented using Sennheizer HDA200 headphones in a

double-walled sound booth.

Working memory performance

Speech perception in noise by older listeners may not only depend on their

hearing status but also on cognitive abilities (Akeroyd, 2008). Moreover, hearing

impairment may itself affect cognitive function (Wingfield and Peelle, 2012). To

ensure that the recruited older NH and HI subjects were matched in cognitive

abilities, a digit-span test was used to measure working memory performance.

In the test, listeners were asked to recall a presented sequence of numbers

(between 1 and 9) in reverse order. The digit span score was then calculated as

the number of items that could be repeated correctly (Blackburn and Benton,

1957). The auditory stimuli were presented via Sennheiser HD650 headphones

at a comfortable level.

Self-evaluated hearing disability

All subjects completed the Speech, Spatial and Qualities of Hearing Scale ques-

tionnaire (SSQ, Gatehouse and Noble, 2004)). The SSQ questionnaire consists of

49 questions related to self-rated hearing abilities in everyday situations. Hear-

ing aid users are asked to rate their listening abilities when wearing their hearing

aid. The questions address hearing in three domains: ”Speech” (e.g., compre-

hending speech and selectively attending to a particular talker in everyday

listening situations), ”Spatial” (e.g., judging direction, distance and movement

of sound sources), ”Qualities” (e.g., segregation of sound sources, clarity and

listening effort).
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3.2.3 Accounting for reduced audibility

The auditory stimuli in the EEG experiments and DaHINT test were ampli-

fied based on audiometric thresholds to account for reduced audibility in the

HI listeners. A linear gain was applied per audiometric frequency using the

’Cambridge formula’ (Moore and Glasberg, 1998) and was limited to 30 dB SPL

gain at any given frequency. The level of the speech stimuli used in the selec-

tive attention EEG experiment was 65 dB SPL before the frequency-dependent

amplification. In the DaHINT test the level of the speech signal was varied adap-

tively. For tone stimuli used in the EEG experiments, the stimuli were adjusted

to comfortable level per subject.

3.2.4 EEG experiments

The EEG experiments were performed in an electrically shielded double-walled

sound booth. In all EEG experiments, the subjects were comfortably seated

and instructed to fixate their eye-gaze at a cross hair presented on a computer

screen. EEG data were recorded using a BioSemi ActiveTwo system with 64-scalp

electrodes positioned according to the 10-20 system. Two additional bipolar

electrooculography electrodes were mounted above and below the left eye. The

EEG data were digitized at a sampling rate of 512 Hz. For 19 of the 44 subjects

(10 NH and 9 HI), EEG was also measured inside the ear canals, but this data

were not included in the analysis. The auditory stimuli were presented via ER-3

insert earphones (Etymotic Research).

Envelope-following responses with tone stimulation

Envelope-following responses (EFRs) were recorded from subjects listening

passively to multi-scale periodic tone sequences designed to induce activity

in the gamma (40 Hz) and theta frequency ranges. Two types of stimulation

paradigms were used. In both paradigms, 1 kHz tone pulses (10 ms Hann-

shaped ramps) with an inter-pulse-interval of 40 Hz were presented in epochs

of 2 s stimulation, alternating with 1 s silence. In the first stimulation paradigm,

0.5-s long 40 Hz tone sequences alternated with 0.5-s long silence intervals.

This resulted in a periodic 4 Hz onset/offset pattern to induce 4 Hz theta activity.

In the second paradigm, no 4 Hz onset/offset pattern was imposed. In each of

the two stimulations, 60 3-s long epochs were presented. The stimuli presented

are illustrated in Figure 3.9 in the Supplementary Material.
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Event-related potentials

Event related potentials (ERPs) were recorded from subjects listening passively

to 1 kHz pure tones. The tone stimuli had duration of 100 ms and were ramped

using a 10 ms long Hann windows. The tones were presented at an average inter-

tone-interval rate of 1 Hz that was randomly jittered +/-25 ms. Each subject

listened to 180 tone repetitions.

Selective speech attention experiment

Continuous EEG were recorded from subjects selectively listening to one of two

competing speech streams or to speech in quiet. The speech stimuli consisted

of two different audiobooks read aloud by a male and a female speaker. Silent

periods in the sound stimuli exceeding 450 ms were truncated to 450 ms. The

audio files were split into 50 s long trials. The speech streams were spatially

separated at ±90o using non-individualized head related transfer functions

(HRTF) provided by (Oreinos and Buchholz, 2013). The audio files were low

pass filtered at 12 kHz using a 2nd order Butterworth filter to avoid excessive

high-frequency amplification for subjects with low audiometric thresholds.

The audio of the two talkers was matched in loudness before spatialization

according to the current ITU standard (ITU-R BS.1770-1). The speech stimuli

were presented at 65 dB SL.

Figure 3.1 presents a schematic of the trial structure of the selective listening

experiment. In 50 s long trials, the subjects listened to either a single talker or

two competing talkers. The auditory attention experiment consisted of 48 trials.

Each subject listened to two blocks of 12 trials with the male speaker as the

target, and two blocks of 12 trials with the female speaker as the target. Each

block of 12 trials consisted of four single-talker trials, and eight two-talker trials.

At the onset of each trial, the subject was instructed to attend to either the male

or the female talker. As an additional cue, the target speech stream was switched

on ∼4 seconds before the interfering speech stream. The EEG data recorded in

this period were discarded from analysis. The number of left versus right targets

trials was balanced over the experiment. After each trial, the subjects were

asked to rate how easy or difficult it was to understand the attended speech on

an analogue rating scale marked ’easy’ and ’difficult’ at the extremes. After the

rating, subjects were prompted to answer four multiple-choice comprehension

questions related to the content of the attended speech stream. The first of the
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Figure 3.1: Auditory attention EEG experiment. (a) Schematic illustration of the trial sequences
of the selective auditory attention EEG experiment. EEG data were recorded from subjects se-
lectively listening to 50 s long excerpts of audiobooks narrated by a male and female speaker.
In single-talker trials (i.e., trials with only one speaker), the masker was not presented. After
each trial, the subjects were asked to rate task difficulty and respond to multiple-choice ques-
tions related to the content of the attended speech stream. Each subject responded to 192
multiple-choice questionnaries. (b) The behavioural results from the selective auditory attention
experiment. (b, left): Difficulty rating scores, (b, right): Comprehension scores. Data shown are
mean and s.e.m.

four comprehension questions was also shown before the trial started. Subjects

were given feedback on their responses.

3.2.5 Data analysis

EFR and ERP data preprocessing

The EEG data were de-trended using a 1s t order polynomial. The ERP data and

EFR data were high-pass filtered at 0.1 Hz (Rousselet, 2012; VanRullen, 2011), us-

ing a windowed sinc type I linear phase finite impulse response filter with delay

compensation, and thereafter low-pass filtered at 30 Hz. The EFR data were low-

pass filtered at 60 Hz. For both EFR and ERP data, we shifted the data to adjust

for filter delays. The data were filtered prior to epoch segmentation. Both data

sets were re-referenced relative to the average response of the electrodes TP7

and TP8. Responses from ”bad electrodes” were visually identified and interpo-

lated using template-based nearest neighbourhood averaging as implemented

in Fieldtrip. On average, 1.7273±1.4685 electrodes were removed. Line noise
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was removed via notch filtering. An automized joint decorrelation framework

(de Cheveigné and Parra, 2014) was employed to remove electroocular (EOG)

artefacts for the analysis of ERPs (see sect. 3.2.5).

ERP analysis

For the ERP data, we examined the mean amplitude of the N1 component

(Clayson et al., 2013) in the time window from 75 to 125 ms. The ERP data

were averaged over a subset of 14 fronto-central electrodes over which the N1

amplitude was prominent (FC5, FC3, FC1, FCz, Fz, FC2, FC4, FC6, F5, F3, F1,

F2, F4, F6; see e.g. Fig. 3.6 in the Supplementary Material for topographical

depiction of the N1 mean amplitude). The data from one subject had to be

excluded from the analysis of ERPs elicited by the tone pulses due to excessive

artefacts.

For the EFR data, we also examined the mean amplitude of the N1 related

to the onset of the auditory stimulation. This was done to better understand

whether potential differences in the inter-trial phase coherence (ITPC) across

NH and HI subjects (see the next subsection) were driven by N1 amplitude

differences across the groups (Diepen and Mazaheri, 2018). This analysis was

carried out in the same way as for the ERP data. For this analysis, the EFR

data were also low-pass filtered at 30 Hz (adjusting for filter delay). The same

electrode cluster and the same time averaging window as for the ERP data were

here considered.

EFR inter-trial phase coherence

The inter trial phase coherence (ITPC) was computed for EEG responses to

EFR stimuli. We performed a time-frequency decomposition of each electrode

response by convolving the EEG responses with complex Morlet wavelets with a

fixed number of twelve cycles per wavelet (Larsen et al., 2018), as implemented

in the Fieldtrip toolbox (Oostenveld et al., 2011). No spatial filtering was per-

formed prior to the analysis. With f0 representing the bandpass center frequency

of each Morlet wavelet, we considered an f0 range between 1 Hz and 50 Hz with

a resolution of 0.01 Hz. The complex output, Fk ( f , t , n ), for trial k = 1, ..., N ,

electrode n , time bin t and center frequency f was then used to compute the
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ITPC:

ITPC( f , t , n ) =
1

N

N
∑

k=1

Fk ( f , t , n )
|Fk ( f , t , n )|

(3.1)

The ITPC ranges between 0 and 1, and indicates the degree of phase consis-

tency of EEG responses to the EFR stimuli over trials (where 0 corresponds to

no consistency and 1 indicates full consistency).

For the statistical analysis of the EFR data, the average of all scalp electrodes

was considered, due to topographical differences in EFR responses at slow- and

fast rates (see e.g. Fig. 3.6 in the Supplementary Material).

Speech EEG data

The EEG data from the speech-listening experiment were de-trended using a 1s t

order polynomial and high pass filtered at 0.5 Hz, using a windowed sinc type I

linear phase finite impulse response filter with delay compensation. Line noise

was removed via notch filtering. The EEG data were re-referenced to the average

response of the two posterior temporal electrodes (TP7 and TP8) that exhibited

stable electrode connections over all trial and subjects. ”Bad electrodes” were

removed according to the procedure described above. The data were then low-

pass filtered at 40 Hz with a 10t h -order low-pass finite impulse response (FIR)

filter and time-shifted to account for the delay introduced by the filter.

A joint decorrelation (JD) framework was employed to remove EOG artifacts

(de Cheveigné and Parra, 2014) in similar way as described in Wong et al., 2018.

Data segments containing EOG artifacts were detected using the Hilbert en-

velope of EOG channel responses and responses over three frontal electrodes,

Fp1, Fpz and Fp2. The Hilbert envelope of each of these channel responses

was bandpass filtered (1-30 Hz) and z-scored. Time points where either of the

resulting signals exceeded a threshold of four were considered artefactual. The

artefactual segments were extended by 0.1 s on both sides. This implementa-

tion was similar to that implemented in the Fieldtrip toolbox (Oostenveld et al.,

2011). The labelled segments were then used to compute an artefact biased

covariance matrix. The estimated artefact biased covariance matrix and the

covariance matrix estimated from the entire dataset were whitened (based on

a principal component analysis). Eigenvectors characterizing the maximum

variance differences between the two covariance matrices was then computed

(Wong et al., 2018; de Cheveigné and Parra, 2014). Eigenvectors with eigenvalues
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larger than >80 % of the maximum eigenvalue were subsequently regressed out

from the data (Wong et al., 2018). Next, the data were downsampled to 64 Hz.

The EEG data were finally filtered between 1 and 9 Hz. This was done by first

applying a 64t h -order FIR high pass filter with a 1 Hz cut-off and then low-pass

filtering the data with a 64t h -order FIR filter with a 9 Hz cut-off. The data were

shifted to account for the filter delay.

3.2.6 Speech envelope entrainment analyses

Speech envelope extraction

The speech envelopes of the attended and unattended speech streams were

extracted using a simplistic functional model of the auditory periphery. Since

the audio stimuli were spatially separated, we extracted both the attended and

unattended speech signals and collapsed the sum across spatial dimension to

obtain audio waveforms. The monaural audio waveforms were passed through

a gammatone filterbank (Patterson et al., 1987) consisting of 24 4th-order gam-

matone bandpass filters with center frequencies on an equivalent rectangular

bandwidth scale (ranging between 100 Hz and 4000 Hz) (Glasberg and Moore,

1990) and 0 dB attenuation at their individual center frequencies. The output

from each gammatone filter was power-law compressed, sgn(x )|x |c , with a com-

pressive factor of c = 0.3 (Ruggero, 1992). The compressed subband signals were

subsequently full-wave rectified, low-pass filtered with a low-order anti-aliasing

filter and resampled to match the EEG sampling rate. Next, we averaged the

output subband envelopes across gammatone frequency channels to obtain a

univariate temporal envelope for each speech stream. Finally, we band-pass

filtered the envelope between 1 Hz and 9 Hz. This was done by first applying a

64t h -order FIR high pass filter with a 1 Hz cut-off and then low-pass filtering

the data with a 64t h -order FIR filter with a 9 Hz cut-off. The data were shifted

to account for the filter delay and downsampled to 64 Hz. For the HI subjects,

we found a high correlation between the temporal envelopes of the amplified

(compensated) audio stimuli and those of the uncompensated audio files. We

achieved comparable results in the stimulus-responses analyses with both types

of envelope representations, and therefore only report results obtained with the

envelopes of the uncompensated stimuli.
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Stimulus-response analyses

Following a number of previous speech-attention studies (Ding and Simon,

2012a, 2013), we considered two complementary analyses of statistical stimulus-

response dependencies between the envelope of the attended and unattended

speech streams and the EEG responses. We considered both forward regression

models, i.e., encoding models, and backward regression models, i.e., decoding

models. The encoding models attempt to predict neural responses to speech

stimuli, R (t , n ), from fluctuations in the speech envelopes S (t ).

R̂ (t , n ) =
K
∑

k=1

S (t −τk )w (τk , n ) (3.2)

where R̂ (t , n ) is an estimate of the EEG response at a given electrode, n =

1, 2, ...N . For the encoding analysis, we considered time lags, τk = {τ1,τ2, ...τK },
ranging between 0 ms and 500 ms post-stimulus. The regression weights w (τk , n )

define a temporal response function (TRF) or temporal kernel that predicts the

EEG response from a weighted sum of the time-lagged speech envelope ampli-

tudes.

The backward decoding model integrates information over all EEG elec-

trodes and all time-lags to reconstruct the speech envelope:

Ŝ (t ) =
N
∑

n=1

K
∑

k=1

R (t −τk , n )w (τk , n ) (3.3)

For the decoding analysis, we considered time-lags τk = {τ1,τ2, ...τK } rang-

ing between −500 ms and 0 ms post-stimulus. For both encoding and decoding

models, we only included data from 6 s after trial onset (i.e. after the onset of

masking stimulus) to 43 s after trial onset.

The weights of the linear regression models were estimated via ridge regres-

sion. Let X be a standardized matrix and let X =UDVT be the singular-value

decomposition of X. Similarly, let Y be a vector with zero mean and unit standard

deviation. The linear regression model can now be formulated as:

Ŷ=Xw, (3.4)

where Ŷ is an estimate of Y. The Ridge regression estimator then takes the form:
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w= argmin
w

�

(Y−Xw)T (Y−Xw)+λwT w
�

(3.5)

=
�

XT X+λI
�−1

XT Y=V
�

D2+λI
�−1

DUT Y,

In the case of a forward encoding model, X is a matrix containing speech

envelope, S (t ), at multiple time lags and Y is the EEG response at a given channel.

In this case, separate Ridge parameters are estimated for each electrode, each

subject and each experimental condition. In the case of a backward model, X is

a matrix containing the multi-channel and time-lagged EEG response and Y is

the speech envelope.

To assess the predictive performance of each model we used a nested cross-

validation procedure. The nested cross-validation procedure consisted of an

outer 10-fold cross-validation loop and an inner 5-fold cross-validation loop.

The data was split 10 times into a training set and a test set, and for each split

we further divided the training data randomly into five equal parts to optimize

the Ridge λ parameter. In this way, the Ridge parameter was optimized over

the training set and the generalization error was evaluated over the held out

test set. We considered 50 ridge parameters, λ, logarithmically spaced between

10−3 and 106. During model fitting and evaluation, the data were standardized

to the empirical mean and standard deviation of the data used for model fitting.

The prediction accuracy was indexed by the Pearson’s correlation coefficient

between the model prediction Ŷ and the target data, Y. For each outer fold, the

Ridge parameter that yielded the highest prediction accuracies over the inner

loop was chosen as optimal. Pearson’s correlation coefficient was chosen as

the metric since it is bound between −1 and +1, is invariant to scaling and shift

errors in the predictions, and since it has been successfully used in the context

of M/EEG-based attention decoding (Ding and Simon, 2012a; O’Sullivan et al.,

2014). To make our results readily comparable to previous studies, we did not

attempt to normalize the correlation metric to account for the inherent variabil-

ity in neural responses across repeated sounds. The prediction accuracy was

estimated as the average over the 10 initial splits of the data. The performance

of the stimulus-response models was in all cases evaluated on data from trials

that had not been used for model fitting.

For the statistical analysis of results from encoding analyses, we averaged the

encoding accuracies over the same subset of fronto-central electrodes as in the
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ERP analysis (FC5, FC3, FC1, FCz, Fz, FC2, FC4, FC6, F5, F3, F1, F2, F4, F6) (see

Fig. 3.6 in Supplementary Material). The noise floor was estimated as in Wong

et al., 2018 by performing the same analyses but with the target regressors being

phase scrambled (phase scrambling EEG responses in the forward modelling

case).

We additionally sought to investigate whether backward models could be

used to decode attention, i.e. classify who the listener was attending to based

on single-trial EEG data. The ability to discriminate between attended and

unattended speech envelopes may provide a measure of how robustly the EEG

entrainment responses are modulated by attention. For this analysis, we tuned

the Ridge parameter to give highest leave-one-trial-out prediction accuracies.

Moreover, in this case we optimized the EOG denoising filters based only on the

single-talker training data. Once the stimulus reconstruction models had been

trained, we used EEG data from the remaining 32 two-talker trials to reconstruct

the speech envelopes of the attended talker. We considered decoding segments

that were 10 s long (taking into account the 0.5 s long kernel of the stimulus

reconstruction models). The decoding segments were non-overlapping, and

each decoding segment was shifted by 5 s long time shifts. We computed the

Pearson’s correlation coefficient between the reconstructed envelopes and the

envelopes of the individual speech streams (henceforth denoted rattended and

runattended). We considered a classification to be correct whenever the neural

reconstruction was more correlated with the envelope of the actual attended

speech stream than with the envelope of the unattended speech stream (i.e.,

rattended > runattended). The chance-level of classification performance was here

assessed with a binomial distribution.

3.2.7 Statistical tests

Repeated measures analysis of variances (ANOVAs) were used to analyze results

from the stimulus-response analyses in the single-talker and the two-talker

conditions in both listener groups. Moreover, repeated measures ANOVAs were

used to analyze average ITPC results over short time windows in both groups

of subjects. Welch’s t-tests were used to compare the results obtained from the

NH and HI listener groups. Pearson’s correlation coefficients were transformed

using the Fisher Z-transformation prior to statistical analyses. Classification

scores, speech comprehension scores, ITPC values and difficulty ratings were

arcsin transformed prior to statistical analyses. When appropriate, we used
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a false discovery rate (Benjamini and Hochberg, 1995) to correct for multiple

comparisons. All statistical tests were conducted using R version 3.4.4 (2018-03-

15).

3.3 Results

3.3.1 Behavioral tests

Figure 3.2 shows the results of the behavioral tests. In terms of speech-in-

noise perception, HI subjects showed significantly higher sentence reception

thresholds compared to the age-matched NH controls (monaural DaHINT test:

t (38.859) = 3.4194, p = 0.001487; Fig. 3.2b). This reduced speech-in-noise per-

formance was observed despite the fact that the speech stimuli were amplified

to compensate for reduced audibility in the HI subjects. Noticeably, the 50 %

speech reception thresholds were negative also for most HI subjects and well be-

low SNRs typically encountered in everyday environments (Billings and Madsen,

2018). HI subjects also exhibited a reduced temporal masking release compared

to the NH subjects (t (−32.739) =−5.5266, p < 2 ·10−6; Fig. 3.2d), suggesting de-

graded temporal processing abilities. In addition, HI listeners reported greater

difficulties with speech listening in everyday listening situations when wearing

their own hearing aid, as rated on the SSQ questionnaire. The different SSQ

ratings related to spatial hearing, speech perception and sound quality were cor-

related (Spearman’s rank correlations: r (SSQ speech, SSQ spatial)= 0.79, r (SSQ

speech, SSQ quality)= 0.82, r (SSQ spatial, SSQ quality)= 0.86) . The ratings aver-

aged across the three subsections of the questionnaire were significantly lower

for the HI group compared to the NH listeners (t (27.185) =−6.5927, p < ·10−6;

Fig. 3.2c). The backward digit span test confirmed similar working memory per-

formance in the age-matched normal-hearing and hearing-impaired listeners

(t (37.847) =−0.67855, p > 0.5; Fig. 3.2e).

3.3.2 Behavioural results from selective attention experiment

Figure 3.1b shows the behavioral results obtained in the EEG selective auditory

attention experiment. Both normal-hearing and hearing-impaired listeners

showed accurate speech comprehension, both in the single-talker condition

and in the condition with two loudness matched competing talkers. A repeated

measures ANOVA showed no main effect of hearing impairment on speech
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Figure 3.2: Behavioral hearing profiles. (a) Pure-tone audiograms for the normal- hearing (upper
panel) and hearing-impaired (lower panel) subjects. Each thin line represents the audiogram
averaged over both ears for a single subject. The thick lines represent averages over all subjects
in each group. (b) Sentence reception thresholds (SRT) in the two groups measured in a speech-
in-noise recognition task. (c) Self-assed hearing disabilities as measured by the Speech, Spatial
and Qualities of Hearing Scale questionnaire (SSQ). Lower ratings indicate greater self-rated
listening difficulties in everyday acoustic environments. The SSQ scores shown here are averaged
over three SSQ subsections (”speech”, ”qualities” and ”spatial”). (d) Tone detection in noise with
or without a 50 ms temporal gap. Hearing-impaired listeners showed less temporal release of
masking, i.e. they showed a smaller benefit from temporal gaps in the noise masker compared to
normal hearing listeners. (e) Working memory performance as measured by an backwards digit
span test. No differences in working memory performance were observed.
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comprehension scores (F (1,42) = 1.305, p > 0.26), but a main effect of talker

condition (single vs two talkers, F (1, 42) = 8.420, p < 0.00589).

Although the two subject groups answered the comprehension questions

with high accuracy, we found that the HI listeners rated the competing speech

listening task to be more significantly difficult compared to the NH listeners

and compared to the single-talker condition (interaction between normal vs

impaired hearing and single vs two talkers: F (1,42) = 4.126, p = 0.0486) (Fig.

3.1b, left).

3.3.3 Cortical EEG correlates of speech envelope entrainment

Normal-hearing and hearing-impaired subjects listened to speech in quiet or

to speech masked by loudness-matched competing speech. To investigate EEG

correlates of cortical speech envelope entrainment in the two groups, we used

forward and backward stimulus-response models. Forward model prediction

accuracies, i.e. the correlation between the low-frequency EEG response and the

response predicted by the encoding model, are shown in Fig. 3.3. A repeated-

measures ANOVA was used to test the effect of hearing impairment on the

fidelity of attended speech entrainment measured by the prediction accuracies.

Main effects of hearing status (NH vs HI, F (1,42) = 7.902, p < 0.00747) and

stimulus condition (single-talker vs two-talker, F (1, 42) = 80.507, p < 2.57·10−11)

were found, but with no significant interaction between the two (F (1,42) =

0.934, p > 0.339). An enhanced envelope entrainment to attended speech was

observed in HI listeners compared to NH controls in both stimulus conditions.

We found no effect of hearing status on the accuracies for the unattended speech

(t (42) = 0.28064, p > 0.7804).

Our entrainment analysis assumes a compressed representation of the

speech envelope. Age-related hearing loss, however, is typically associated

with loss of outer hair cells, which reduces the compressive properties of the

inner ear. We performed the same analysis, but with joint encoding models

operating on multiple speech envelopes that were power-law compressed with

(c = {0.1,0.2,0.3, ...,1}). An increased prediction accuracy would suggest that

other power-law compressive factors lead to improved predictive power. A

repeated-measures ANOVA was used to investigate the effect of HI on predic-

tion accuracies obtained with joint models trained on attended speech. This

analysis revealed a main effect of HI on prediction accuracies (F (1, 42) = 7.961,

p < 0.00727), a main effect of listening condition (single-talker vs two-talker)
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Figure 3.3: Results of the forward model analysis of speech envelope entrainment. Bars indicate
the correlation between the speech envelope model and the EEG responses of the normal-hearing
(light blue) and hearing-impaired (dark blue) listeners. Data is here averaged over a fronto-central
cluster of electrodes. Each point represent data from a single subject. Error bars represents s.e.m.
across subjects. The shaded area indicates the estimated noise floor

(F (1, 42) = 62.35, p < 7.81 ·10−10) and no significant interaction (F (1, 42) = 0.48,

p > 0.492). No effect of hearing impairment on unattended accuracies obtained

with this model was found t (41.999) = 0.44691, p > 0.6572).

The backward model reconstructs the envelope of attended and unattended

speech streams from the multi-channel EEG response. The reconstruction

accuracies provide a complimentary measure of envelope entrainment that

takes all EEG electrodes into account. Results from this analysis are shown in

Figure 3.7. Again, we observed a main effect of hearing status (F (1, 42) = 13.18,

p = 0.000764), and stimulus condition (single-talker vs two-talker) (F (1,42) =

73.748, p < 8.6 · 10−11), suggesting again an enhanced fidelity of cortical en-

velope entrainment in the HI subject group. We did not observe a any effect

of hearing impairment on the ability to reconstruct envelopes of unattended

speech (t (39.195) = 1.275, p > 0.2098).

Both our analyses suggested a robust differential envelope entrainment to

the attended and unattended speech signals in both groups, similar to what

has been reported for normal-hearing listeners (e.g. Ding and Simon, 2012a;

Mesgarani and Chang, 2012; O’Sullivan et al., 2014). We next investigated the
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Figure 3.4: Results of the attention decoding analysis. Stimulus reconstruction models trained
on EEG responses to single-talker speech stimuli were used to decode envelopes of attended
speech from EEG responses to two-talker stimuli in 10 s long decoding segments. For a given
segment, correct classification indicates that rattended was higher than runattended. Left: Attention
classification accuracies in normal hearing and hearing-impaired listeners. Each point represent
data averaged from a single subject. The dashed line represents chance-level. Errorbars indicate
s.e.m. Right: Reconstruction accuracies. Each point reflect accuracies for a given subject and a
given decoding segment. Data is here shown for all subjects and all decoding segments.

degree to which this differential response could be used to classify the atten-

tional focus from single-trial EEG responses (O’Sullivan et al., 2014). Here, we

focused on backward models trained on data from single-talker trials. A correct

classification here does not by itself necessarily suggest that rattended is high, but

only that it is higher than runattended. The classification accuracies were evalu-

ated for 10 s long decoding segments. We found that the reconstruction filters

could reliably discriminate between attended and unattended speech in both

groups of listeners (Fig. 3.4). Classification accuracies were above chance-level

for all subjects except for one (α < 0.05, binomial tests). The mean classifica-

tion accuracy for 10 s long segments of unaveraged EEG data were 85.07% for

the HI listeners and 81.76% for the NH listeners (Fig. 3.4). We found no effect

of hearing loss on the attention classification accuracies (t (41.625) = 1.4141,

p > 0.1648).

3.3.4 Envelope entrainment to tones during passive stimulation

Our speech experiments with both single and competing talkers suggested an

enhanced envelope entrainment in HI listeners, possibly indicating a stimulus-
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driven effect. Next, we recorded EEG responses to repeated tone sequences

during passive stimulation to obtain measures of cortical envelope entrainment

unrelated to attention or listening effort. We used periodic multi-scale tone

stimuli designed to evoke activity in the gamma (40 Hz) or theta (4 Hz) range

(stimuli illustrated in Fig. 3.9). We computed the inter-trial phase coherence

(ITPC) to assess how precisely EEG activity synchronized to the periodic tone

sequences. The top row in Figure 3.5 shows the ITPC results for the two types

of tone stimuli in non-overlapping analysis windows of 0.5 s. Results have

been averaged over all electrodes (see Fig. S1 for topographies of the 4 Hz

ITPC and 40 Hz ITPC). For the 4 Hz stimulation (Fig. 3.5, top left), a repeated

measures ANOVA on the ITPC revealed a main effect of hearing impairment

(F (1,42) = 4.956, p = 0.0314), a main effect of time (F (3,126) = 85.458, p <

2 ·10−16) as well as an interaction effect (F (3, 126) = 5.404, p = 0.00157). Post hoc

t-tests revealed that the 4 Hz ITPC was significantly higher (after applied FDR

corrections, q = 0.05) for HI than for NH in the time period 0 s to 1 s post onset

(0-0.5 s: t (41.92) = 2.7799, p = 0.008103; 0.5-1.0 s: t (42) = 2.7452, p = 0.008861;

1.0-1.5 s: t (42) = 1.5808, p = 0.1214; 1.5-2.0 s: t (42) = 0.95423, p = 0.3454). On

the other hand, the ITPC across sustained 40 Hz gamma stimulation (Fig. 3.5,

top right) showed no main effect of hearing loss (F (1, 42) = 1.531, p = 0.223), or

time (F (3, 126) = 1.414, p = 0.242).

3.3.5 Event-related potentials

We measured ERPs to transient 1 kHz tones beeps during passive listening.

No effect of hearing impairment on the mean amplitude of the N1 was found

(t (41.928) = −1.1891, p = 0.2411; Figure 3.8 in Supplementary Material). We

additionally extracted ERPs elicited by the onset of the periodic tone sequences

described above. Again, no effect of hearing impairment on the mean N1 ampli-

tudes was observed, neither for the theta (t (40.936) =−0.71995, p = 0.4756) nor

the gamma stimuli (t (41.983) =−1.8861, p = 0.06621). This could also indicate

that the group difference in the EFRs measured by the ITPC was not driven by

amplitudes of transient ERP responses.
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Figure 3.5: EEG responses to periodic tone sequences during passive stimulation. Left column:
ITPC for EEG responses to 4 Hz theta tone stimuli. Right column: ITPC for EEG responses to 40
Hz gamma stimuli. Top row: Mean ITPC across subjects for both groups of listeners, averaged
over all scalp electrodes in nonoverlapping 0.5 s long time intervals over the 2 s long stimulation
periods. Shaded areas indicate s.e.m. The individual red (HI) and blue (NH) points represent
data from each subject. Middle and bottom rows: Time-frequency representations of the ITPC
for each subject group.
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3.4 Discussion

In the present study, we investigated effects of peripheral hearing loss on EEG

correlates of attention-driven cortical speech envelope entrainment. Twenty-

two HI subjects and twenty-three age-matched NH subjects took part in the

experiment. The results from a monaural speech-in-noise test (DaHINT) sug-

gested that the identification of speech in noise was more vulnerable to the

level of background noise in the HI subject group than in the NH subject group.

The HI listeners demonstrated lower temporal processing abilities in a behav-

ioral tone detection task (FT test) and reported greater everyday-life hearing

disabilities (SSQ scores), but performed equally well as the NH listeners in a

backwards digit span task. In the auditory attention EEG experiment where the

subjects listened to speech in quiet or to speech masked by competing speech,

we found that the fidelity of the cortical EEG entrainment to the envelopes of

attended speech was enhanced in the HI listeners compared to the NH listeners,

but that speech comprehension scores were equally high in the two subject

groups. Moreover, it was possible to classify from EEG activity which of the two

concurrent speech streams the subjects were attending to. We obtained equally

high classification accuracies in the two subject groups, suggesting robust at-

tentional modulations of EEG entrainment responses in both subject groups.

Finally, in a passive listening EFR paradigm, we observed an enhanced 4 Hz EEG

phase-locking to rhythmic tone sequences in the HI subject group. This suggest

that group differences in the fidelity of the cortical EEG envelope entrainment

responses may not necessarily be effort-related or speech-specific. The find-

ings support that, even though an SNHL may be associated with exaggerated

sound evoked cortical responses, it does not necessarily hamper attentional

modulations of cortical auditory entrainment responses.

Exaggerated cortical responses to auditory stimuli have previously been

observed in the aging auditory system Alain, 2014; Lister et al., 2011; Presacco

et al., 2016a,b; Sörös et al., 2009; Tremblay et al., 2003. Yet, studies on the effects

of aging on central auditory processing often compare young normal hearing

listeners with older listeners who have non-normal pure tone audiograms (sug-

gestive of deficits to the auditory periphery). The results from this study suggest

that such peripheral deficits could be an important contributor to exaggerated

sound-evoked cortical entrainment responses.

HI listeners often experience listening difficulties in selective listening tasks
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(e.g. when listening to monaural speech embedded in stationary background

noise; Fig 3.2a). A degraded peripheral input can affect the perceptual seg-

regation of sounds and interfere with central attention processes (Dai et al.,

2018). Yet, the behavioural results from the auditory attention EEG experiment

suggested that there was no effect of an SNHL on the ability to recognize speech

in quiet or speech masked by competing speech. This was mirrored by results

from the stimulus-response analysis that suggested equally robust attentional

modulations of cortical auditory entrainment responses in both subject groups.

Furthermore, we found that the HI subject group rated selective listening task

to be more difficult than the NH subject groups did. This may indicate that HI

listeners put more effort into maintaining effective attentional control (Peelle

and Wingfield, 2016; Peelle et al., 2011).

The present study extended previous studies (Alain, 2014; Kale and Heinz,

2010; Millman et al., 2017; Zhong et al., 2014) by demonstrating that a HI can

enhance the fidelity of the cortical EEG entrainment to rhythmic tone sequences

during passive listening, but also to envelopes of attended speech during se-

lective listening. It would be interesting to consider these results in the light of

the ”fluctuation-profile coding” framework that was recently proposed (Carney,

2018). This framework proposes that slowly varying amplitude fluctuations

across auditory-nerve (AN) channels convey important information about com-

plex sound features. The neural fluctuation-profiles depend, among other

things, on inner hair cell transduction properties and on an efferent system

that controls the cochlear gain and the sharpness of the fluctuation-profile. A

sensorineural hearing loss may, according to this framework, negatively im-

pact the neural fluctuation-profiles in several ways, e.g. as a consequence of

changes in the inner hair-cell transduction properties. The resulting effect is

that the fluctuation-profile contrasts across AN channels may be reduced, while

the fluctuation amplitudes are increased. The enhancement in fluctuation

amplitudes may not be perceptually beneficial, as reduced contrasts across

AN channels could impair the system. This could potentially explain why we

observed enhanced cortical EEG envelope entrainment responses in listeners

with a SNHL who otherwise showed a degraded performance in a behavioural

temporal processing task and in a speech-in-noise identification task.

The speech streams were spatially separated in the auditory attention EEG

experiment in order to support the perceptual segregation of sound streams.

The spatial separation of the competing speech streams was not explicitly taken



38
3. The influence of a sensorineural hearing loss on cortical auditory EEG

entrainment during selective listening

into account in the stimulus-response analyses, but may have affected the re-

sults (Dai et al., 2018; Marrone et al., 2008). However, the gender of the target

speaker as well as the spatial lateralization of the target speaker was random-

ized across trials in an attempt to avoid systematic biases in EEG responses

related to the spatial position of the target speaker as well as the gender of the

target speaker. The motivation behind spatially separating the speech streams

was that HI listeners often experience listening difficulties in monaural two-

talker listening conditions (Neher et al., 2009). Reduced speech intelligibility

(possibly related to deficits in perceptual sound segregation) in the HI subject

group could potentially affect results from stimulus-response analysis (Ding

and Simon, 2013; Kong et al., 2015). An alternative strategy to improve speech

intelligibility and support perceptual sound segregation would be to present

the speech mixtures at positive target-to-masker ratios. However, in this case,

the EEG synchronization to the envelopes of attended speech could reflect a

cortical encoding of the sound mixture rather than of individual sound streams.

Selective responses to attended speech would, in this case, not be dissociable

from effects of differences in sound level between streams.

In our stimulus-response analyses, we assumed that the predictive perfor-

mance of the models would represent the fidelity of the cortical EEG entrain-

ment to target envelopes (Ding and Simon, 2012a). Statistical stimulus-response

dependencies between speech envelopes and M/EEG responses may reflect

both sensitivity to, and the binding of, different sound features beyond the

envelope (Ding and Simon, 2014). Interestingly, we found an effect of SNHL on

the fidelity of cortical envelope entrainment responses both to attended speech,

but also to rhythmic tone stimuli. This could be interpreted as indicating that

enhanced speech envelope entrainment responses observed in HI listeners

primarily reflect cortical encoding of low-level acoustic features rather than

higher-level phonetic- or linguistic features.

Recent evidence suggest that attentional modulations of tone-evoked cor-

tical EEG responses may increase over short time scales for NH listeners, but

not for HI listeners (Dai et al., 2018). In our attention experiment, we consid-

ered long trials with speech stimuli where the target speech stream was onset a

few seconds before the distracting speech stream. However, it is possible that

similar attentional build-up effects to those reported in (Dai et al., 2018) could

affect EEG responses to speech mixtures.

Several studies have investigated the effects of SNHL on ERPs in age-matched
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older listening groups (Alain, 2014; Bertoli et al., 2005; Harkrider et al., 2006;

Tremblay et al., 2003). However, results have been inconsistent regarding N1

amplitudes. Bertoli et al., 2005 found reduced tone-evoked N1 amplitudes in

HI listeners, Harkrider et al., 2006 reported enhanced speech-evoked N1 ampli-

tudes in HI listeners, Tremblay et al., 2003 reported enhanced N1 amplitudes

in HI listeners for voiceless speech with longer voice onset times, but not for

stimuli with short voice onset times, and finally, Alain, 2014 found no significant

effect of SNHL on N1m (the magnetic counterpart of N1). Here, we did not

observe any effects of HI on the mean amplitudes of the N1 component elicited

by tone stimuli. This was the case both for EFR stimuli and for ERP stimuli.

One way to interpret our results is that the stimulus-response models and the

4 Hz ITPC measures can provide additional information about the temporal

dynamics of band-limited EEG activity. However, this conclusion is premature

at this point, particularly considering the relatively low number of epochs used

for extracting ERPs.

In the auditory attention EEG experiment, we applied a frequency-dependent

amplification scheme to speech stimuli to account for reduced audibility in the

HI subject group. This was done to investigate speech processing and effects

of attention beyond changes in audibility of the signal. However, how sound

amplification might affect the results remains unclear. It is possible that the

cortical encoding of some sound features depends on the physical sound pres-

sure level of the acoustic stimulus rather than on their sensation level (Billings

et al., 2007; Carney, 2018; Jenkins et al., 2018). This could, in turn, affect results

from the M/EEG experiments. Here, different sound amplification strategies

were considered for the selective attention speech experiment and for the tone

stimulation experiments, but results from both experiments suggested an en-

hanced cortical envelope entrainment in HI listeners. Finally, it is possible that

some of the HI listeners were accustomed to certain hearing aid settings. It is

not clear how everyday usage of hearing aids affect behavioural performance in

selective attention tasks.
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3.5 Supplementary Material

a
b Encoding accuracies

Event-related potentials

c ITPC

Figure 3.6: Topographies of different analyses. a: Topographies of mean N1 amplitudes in the
tone-evoked ERPs. b: encoding accuracies obtained with condition-specific forward models in
the single-talker conditions (top-row) and in two-talker conditions (middle row and bottom-row).
c: ITPC across EEG responses to multi-scale stimuli. Top-row here depicts 4 Hz ITPC for 4 Hz
theta stimulation. Bottom row depicts 40 Hz ITPC for gamma stimulation. The ITPC was here
averaged over a time period from 0 s to 2 s for illustration purposes. The highlighted electrodes
in a and b were considered for the statistical analyses.
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Figure 3.7: The ability to reconstruct envelopes of attended and unattended speech streams from
EEG activity in the different listening conditions. Model performance was assessed by nested
cross-validation procedures. Reconstruction accuracies reflect Pearson’s correlation coefficient
between neural reconstruction and target envelope over trials not used for model fitting. Points
reflect averaged data for each individual subject. Errorbars represent s.e.m. Bar height reflect
group-mean average.

a b

 

Figure 3.8: Cortical event-related potentials (ERPs) to 1000 Hz ramped tones presented with
pseudo-random repetition rates. a Individual traces of ERP data averaged over the same fronto-
central electrode cluster that was used for the entrainment analysis. Thin lines reflect data from
individual subjects. Thick lines reflect group-mean averages. b: Mean amplitude of N1 ERPs.
Each point reflect data from individual subjects. Errorbars show s.e.m. across subjects.
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Figure 3.9: Schematic of sound stimuli used for EFR experiments. The carrier frequency of the
pure tones was 1 kHz. During sound stimulation, the inter-tone-interval was 40 Hz (top). Left:
schematic of delta-gamma stimuli. In this case, 0.5 s long trains of tone beeps alternated with
0.5 sec silence. After three repititions, the stimuli were followed by 1 s of silence. Right: gamma
stimuli. In this case the the tone sequences lasted 2 s, followed by 1 s silence.
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EEG correlates of entrainment to speech

envelopes in reverberant, multi-talker
environmentsa

Abstract

Selectively attending to one speaker in a multi-speaker scenario

is thought to synchronize low-frequency cortical activity to the at-

tended speech signal. In recent studies, reconstruction of speech

from single-trial electroencephalogram (EEG) data has been used

to decode which talker a listener is attending to in a two-talker situ-

ation. It is currently unclear how this generalizes to more complex

sound environments. Behaviorally, speech perception is robust to

the acoustic distortions that listeners typically encounter in every-

day life, but it is unknown whether this is mirrored by a noise-robust

neural tracking of attended speech. Here we used advanced acoustic

simulations to recreate real-world acoustic scenes in the laboratory.

In virtual acoustic realities with varying amounts of reverberation

and number of interfering talkers, listeners selectively attended to

the speech stream of a particular talker. Across the different lis-

tening environments, we found that the attended talker could be

accurately decoded from single-trial EEG data irrespective of the

different distortions in the acoustic input. For highly reverberant en-

vironments, speech envelopes reconstructed from neural responses

to the distorted stimuli resembled the original clean signal more

than the distorted input. Single-trial attention decoding accuracies

based on 40-50s long blocks of data from 64 scalp electrodes were

equally high (80-90% correct) in all considered listening environ-

a This chapter is based on: Fuglsang, S. A.; Dau, T.; Hjortkjær, J. H (2017). ”Noise-robust cortical

tracking of attended speech in real-world acoustic scenes”. Neuroimage

43
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ments and remained statistically significant using down to 10 scalp

electrodes and short (< 30-s) unaveraged EEG segments. In contrast

to the robust decoding of the attended talker we found that decoding

of the unattended talker deteriorated with the acoustic distortions.

These results suggest that cortical activity tracks an attended speech

signal in a way that is invariant to acoustic distortions encountered

in real-life sound environments. Noise-robust attention decoding

additionally suggests a potential utility of stimulus reconstruction

techniques in attention-controlled brain-computer interfaces.

4.1 Introduction

Speech communication is remarkably robust to the signal distortions encoun-

tered in everyday acoustic environments. Successful speech comprehension in

noisy situations relies both on the ability of the auditory system to segregate

simultaneous sound sources, but also on the listeners’ ability to direct atten-

tional focus to a potentially degraded sound stream while suppressing irrelevant

information. Numerous electrophysiological studies in humans have reported

a synchronization between the slow (<20 Hz) temporal modulations inherent

in speech signals and low-frequency cortical activity in the delta (1-4 Hz) and

theta (4-8 Hz) frequency ranges (Ahissar et al., 2001; see Ding and Simon, 2014

for a review). In scenarios with more than one talker, selective attention has

been shown to enhance the cortical tracking of the attended speech and to

suppress synchronization of the ignored speech (Ding and Simon, 2012a,b;

Golumbic et al., 2013; Horton et al., 2013; Kerlin et al., 2010; Mesgarani and

Chang, 2012; Power et al., 2012). A number of recent studies have employed

’stimulus reconstruction’ techniques (Bialek et al., 1990; Mesgarani et al., 2014a;

Rieke et al., 1995) to reconstruct the envelopes of competing speech signals from

the EEG response. It has been shown that an enhanced neural reconstruction

of the attended speech signal can be used to decode which talker a listener

is attending to with less than one minute of unaveraged EEG data (Mirkovic

et al., 2015; O’Sullivan et al., 2014). However, successful decoding of attention

from single-trial EEG has only been demonstrated in acoustically controlled

environments with two competing talkers. It is currently unknown how well

these results generalize to real-life acoustic scenarios where the speech signals

to be decoded are distorted, e.g. by reverberation or background noise.
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In order to extract speech sources from a complex scene, the brain must rep-

resent the relevant signal in a way that is robust to noise. Converging evidence

from animal electrophysiology suggests that noise-invariant representations of

sounds emerge at later stages in the auditory pathway by neuronal adaptation

to stimulus statistics (Mesgarani et al., 2014a; Moore et al., 2013; Rabinowitz

et al., 2013). Using stimulus reconstruction with population responses in ferrets,

(Mesgarani et al., 2014a) demonstrated that speech stimuli with added rever-

beration or stationary noise reconstructed from auditory cortex resembled the

original clean signal more than the distorted signal. Temporal coding of ampli-

tude modulations in the auditory midbrain may even be enhanced in real-world

reverberation compared to anechoic conditions (Slama and Delgutte, 2015). In

cortex, the entrainment of low-frequency activity to speech envelope fluctua-

tions has been shown to be robust to stationary noise, even when the intensity of

the background noise is greater than the speech signal (Ding and Simon, 2013).

However, in situations where the ’background’ sound stream is itself a poten-

tial auditory object of interest (e.g., another speech signal), perception cannot

rely solely on bottom-up mechanisms. In this case, top-down attention plays

a critical role in ignoring irrelevant information. Yet, it remains unclear how

attention may contribute to the formation of noise-invariant representations in

human cortex.

In real-world listening environments, speech signals are inevitably distorted,

e.g. by sound reflections and reverberation. Unlike background sounds that

can form a separate sound stream to be ignored, such ’transmission’ distortions

degrade the attended speech signal itself. Previous studies have mainly consid-

ered how acoustic degradations that reduce speech intelligibility affect envelope

entrainment. Noise-vocoded speech with a temporal envelope that resembles

that of the original signal but degrades speech intelligibility has been found to

reduce cortical speech tracking responses in the theta range (Ding and Simon,

2014; Peelle et al., 2012) and to diminish the differential cortical response be-

tween the attended and the unattended talker (Kong et al., 2014; Rimmele et al.,

2015). However, such artificial signal manipulations also affect the statistics

of natural speech stimuli and degrade the acoustic cues that listeners typically

use to maintain stable speech recognition. In real-world reverberant rooms,

normal-hearing listeners can maintain robust speech recognition even when

the acoustic envelope of a signal has been substantially distorted (Darwin and

Hukin, 2000; Ruggles and Shinn-Cunningham, 2011). Robust discrimination of
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sound sources has been proposed to rely on the statistical regularities that are

found in real-world reverberation (Traer and McDermott, 2016). It is currently

unknown whether robust speech perception, despite the envelope distortions

imposed by real-world rooms, is mirrored by a cortical entrainment mechanism

that is robust to these distortions.

In the current study, we investigated this question using speech stimuli

embedded in real-world acoustic scenes. Using acoustic simulations, we cre-

ated virtual auditory scenes with multiple talkers and different reverberant

decay properties. In a two-tiered approach for reproduction of these sound

scenes, we first reproduced the scenes over earphones in an electromagnetically

shielded environment to control for noise in the EEG measurements. Next,

we reproduced the sound scenes using a multi-loudspeaker virtual reality fa-

cility providing accurate free-field reconstructions of real-world rooms. This

provided listeners with the full range of acoustic cues typically encountered

in everyday listening situations. Since reverberation and background talkers

can severely disrupt the envelope of an attended speech signal, this approach

allowed us to examine the cortical tracking of distorted envelopes with intact

speech recognition. We measured ongoing scalp EEG while the subjects selec-

tively attended to a particular talker embedded in these different scenes. Using

stimulus reconstruction to derive envelopes of attended speech streams from

single-trial EEG, we investigated (i) whether the clean envelope of an attended

speech stream could be reconstructed from a distorted input when speech

perception is robust, and (ii) whether this might facilitate the decoding of the

attended talker in real-world acoustic scenes. We hypothesized that attention

promotes noise-robust neural representations of attended sound streams such

that attended speech envelopes reconstructed from cortical EEG resemble the

clean signals to a similar or even higher degree than the distorted input. Such

a cortical robustness would allow attention decoding accuracies in real-world

acoustic scenes that are similar to those observed with undistorted signals.

4.2 Material and methods

4.2.1 Participants

Twenty-nine subjects (13 females, 25 right-handed), aged from 19 to 30 years,

participated in the experiment. Three subjects were excluded from the analysis
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because of missing data from several trials. All participants were students

with self-reported normal hearing and no history of neurological disorders.

The subjects received financial compensation for their participation in the

experiment. The experimental procedure was approved by the Science Ethics

Committee for the Capital Region of Denmark, and written informed consents

were obtained from all participants before the experiment in accordance with

the Declaration of Helsinki.

4.2.2 Stimuli and virtual room simulations

Two hours of speech material were recorded from a male and a female profes-

sional story teller narrating fictional stories. The speech material was recorded

in an anechoic chamber at the Technical University of Denmark (DTU) and

sampled at a frequency of 48 kHz. The naturally spoken stories were subse-

quently segmented into consecutive 50-second long segments that were each

accompanied by multiple-choice questions.

Virtual auditory environments (VAEs) were simulated using the room acous-

tic modeling software Odeon (version 13.02). To create auditory scenes repre-

sentative of everyday listening environments, we simulated the acoustics of a

mildly reverberant room and a highly reverberant room. A model of a square

classroom at DTU (9×7×3 m3) was used to represent a mildly reverberant en-

vironment and a model of the Hagia Irene church ( 39.000 m3) represented a

highly reverberant listening scenario. Binaural impulse responses were derived

for each of the VAEs at two source-receiver positions, with source-receiver dis-

tances of 2.4 m and target sources positioned at±60o along the azimuth with 0o

elevation angles (see Figure 1C). The impulse responses of the simulated rooms

and the 50-s long excerpts of the speech material were used to create virtual

auditory scenes with the two speakers of different gender talking at the same

time from different positions. The two concurrent speech streams were nor-

malized to have the same root-mean-square (RMS) value and were presented

at a sound pressure level (SPL) of 65 dB. For the mildly reverberant room, a

scenario with additional 6 talkers (3 male, 3 female) positioned uniformly along

the azimuth direction 2.4 m from the listener was simulated in addition to the

two target talkers positioned at ±60o azimuth. The multi-talker babble of the

six additional speakers was presented at a level of 55 dB SPL. The average de-

cay time constant of the mildly- and highly reverberant rooms were T30=0.9 s

and T30=4 s, respectively. The clarity, defined as the ratio of the direct 80-ms
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sound energy to the remaining energy, ranged between C(80,63Hz)=5.7 dB and

C(80,4kHz)=7.4 dB for the mildly reverberant room and between C(80,63Hz)=6.7 dB

and C(80,4kHz)=9.7 dB for the highly reverberant room. For the data analysis, all

reverberant signals and their corresponding anechoic signals were temporally

aligned using cross-correlation. For comparison, a condition with the two talk-

ers positioned at ±60o azimuth in an anechoic room with no reverberation was

also included.

The speech stimuli were delivered via two different sound reproduction

systems. For nine subjects, the VAEs were reproduced with a multi-loudspeaker

virtual reality facility. The multi-loudspeaker setup consisted of 64 loudspeak-

ers mounted in an anechoic chamber on a full spherical array with a radius

of 2.4 m and four subwoofers. The listener was positioned on a suspended

wire floor at the center of the loudspeaker array. To reproduce the sound fields

within the loudspeaker array, we used a loudspeaker-based room auralization

system (Favrot et al., 2010), which separately processes three parts of binaural

room impulse responses (accounting for the direct sound, early reflections,

and late reflections) using higher-order Ambisonics (Malham and Myatt, 1995).

For the other 20 subjects, the binaural VAEs were reproduced in a soundproof,

electrically-shielded listening booth with ER-2 insert earphones (Etymotic Re-

search) to control for electromagnetic interference during the EEG recordings.

In order to spatially separate clean speech signals presented with insert ear-

phones, the clean signals were convolved with non-individualized head-related

impulse-responses for azimuth angles of ±60o and an elevation angle of 0o . Lis-

tening environments with more than two competing talkers were only simulated

for the recordings in the multi-loudspeaker array.

4.2.3 Extraction of acoustic speech features

For stimulus-response analysis, the time-varying patterns of amplitude modu-

lations in the speech signals were derived from a physiologically inspired model

of envelope processing in the peripheral auditory system. For each speech

mixture, we separately obtained monaural versions of the speech streams from

each talker. In listening environments with reverberation and sound reflections,

the monaural speech signals were obtained both for the speech streams with

reverberation and for their underlying clean signals (without reverberation).

Each of the monaural speech signals was passed through a bandpass filterbank

(Patterson et al., 1987) to account for the band-pass characteristics of the basilar
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membrane. To mimic the nonuniformity of psychophysically derived auditory

filter shapes with increasing frequency (Moore and Glasberg, 1983), the centre

frequencies of the bandpass filters were uniformly spaced between 150 Hz and

8000 Hz on an equivalent rectangular bandwidth (ERB) rate scale. The envelope

of the signal was extracted at the output of each cochlear filter via the analytical

signal obtained from the Hilbert transform and raised to the power of 0.3 to

account for the compressive response of the inner ear (Plack et al., 2008). Sub-

sequently, the narrowband envelopes were low-pass filtered at 10 Hz using a

single zero-phase modulation filter. Finally, the output was averaged across

cochlear filters.

4.2.4 Experimental procedure

During 50-s long presentation intervals, the subjects listened selectively to one

of two or more simultaneous speech streams in the different simulated acoustic

environments. Each subject listened to sixty trials in which they were cued to

listen attentively to the target speech stream while ignoring any competing talker.

The subjects were instructed to minimize motor activity and fix their eye gaze

to a cross hair during stimulus presentation. After each trial, the subjects were

required to answer a multiple-choice questionnaire related to the content of the

attended speech stream. The answers to the comprehension questions served

as indicators of whether the subjects attended the target talker and whether the

speech was comprehensible in the different listening conditions. The subjects

had to take longer breaks after 10 successive trials. The order of presentation

of the different virtual auditory environments (two-talker anechoic, two-talker

mild reverberation, 8-talker mild reverberation, two-talker high reverberation)

was independently randomized across trials for each participant. Moreover, the

position of the target speaker relative to that of the listener (±60o ) as well as the

gender of the target speaker were randomized across blocks for each subject.

Finally, we randomized the order in which the stories were presented across

subjects. The randomization procedure was done to avoid the likelihood that the

neural responses to attended and unattended speech would be systematically

biased by talker identity, pairing of the fictional stories or talker position.



50
4. EEG correlates of entrainment to speech envelopes in reverberant,

multi-talker environments

4.2.5 EEG data acquisition

EEG were recorded from 64 electrodes mounted on a head cap (10/20 layout)

using a BioSemi ActiveTwo system. The data collected from each electrode were

recorded with a sampling rate of 512 Hz. Two additional electrodes were placed

on the mastoids as physiological reference signals. For the purpose of removing

electroocular activity, we recorded vertical and horizontal electrooculograms

(EOGs) using six bipolar electrodes.

4.2.6 Data analysis

EEG preprocessing

The EEG data were analyzed offline using Matlab (MathWorks) and the Fieldtrip

toolbox (Oostenveld et al., 2011). The signals picked up by each electrode were

band-pass filtered using a zero-phase forward filter with delay compensation

with -6dB cutoffs at 1 Hz and 64 Hz. The data for each channel were subse-

quently downsampled to 128 Hz and re-referenced to the average response

of the mastoid electrodes. The time series of each channel were visually in-

spected and excessively noisy channels were removed from the analysis. On

average, there were 1.8 (SD =1.7) channels rejected. Infomax-based indepen-

dent component analysis (Makeig et al., 1996) was used to identify and remove

electrooculographic components from the EEG recordings for each subject.

On average, 5.8 (SD = 2.2) components were removed from the data by linear

decomposition. Retained components were backprojected to the electrode

domain and missing channels were re-interpolated using a spline interpolation

algorithm available with Fieldtrip (Oostenveld et al., 2011). Since a number of

studies have reported that the neural tracking of speech envelopes measured

by EEG or magnetoencephalography (MEG) is most prominent in the delta (1-4

Hz) and theta (4-8 Hz) frequency range (Ding and Simon, 2012a,b; Luo and

Poeppel, 2007; O’Sullivan et al., 2014), we finally lowpass-filtered EEG signals at

8 Hz using a zero-phase second-order Butterworth filter.

Reconstructing speech from neural responses

We used a stimulus-reconstruction technique (Mesgarani et al., 2009; O’Sullivan

et al., 2014; Pasley et al., 2012) to derive finite impulse response (FIR) filters that

linearly map a spatio-temporal neural response to stimulus features (i.e., recon-
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struction filters; (Bialek et al., 1990; Mesgarani et al., 2009; Rieke et al., 1995).

Here we used the reconstruction method to estimate the temporal envelope of

the speech signal, S (t ), at time point t from a weighted combination of neural

activity R (t , n ) picked up by the EEG electrodes across L lags:

Ŝ (t ) =
N
∑

n=1

L
∑

l=1

g (τl , n )R (t −τl , n ) (4.1)

where τ= {τ1,τ2, ...τL} represents the time-lags, n = {1, 2, ...N } indicate the

EEG channels and Ŝ (t ) is the estimated envelope.

To determine the identity of attended speakers from cortical activity, we

trained reconstruction filters to estimate the envelope of either the attended

speech stream (i.e. attended decoders) or the unattended speech stream (i.e.

unattended decoders) (Ding and Simon, 2012a; O’Sullivan et al., 2014). The

filter coefficients were estimated using ridge regression (Crosse et al., 2015;

Hoerl and Kennard, 1970), trained separately on data from each subject in each

acoustic condition (two-talker anechoic, two-talker mild reverberation, two-

talker high reverberation and 8-talker cocktail party). Fitting such condition-

specific reconstruction filters ensured that the decoders were not biased by the

other listening conditions. Attended decoders were fitted using the envelope of

the attended speech streams and EEG data from all-but-one trials of a particular

condition. The unattended decoders were trained in the same manner, but

on the envelope of the unattended speech streams. The decoders were then

used to reconstruct envelopes of the individual speech streams from the EEG

data in the trial that had not been used for training the models. Reconstruction

accuracies were computed as the Pearson’s correlation coefficient between the

predicted speech envelopes Ŝ (t ) and the envelopes of the target speech stream.

We considered a data segment to be successfully decoded, if the reconstructed

envelope had a higher correlation with the attended speech envelope than

with the unattended speech envelope, or similarly, if the reconstruction of the

ignored speech signal was more correlated with the unattended envelope than

with the attended one (O’Sullivan et al., 2014). To investigate potential noise-

robust cortical representations of the speech envelope, we reconstructed both

the temporal envelopes of the speech streams of the individual talkers distorted

by reverberation as well as the envelopes of the corresponding original clean

signal without reverberation. The ’distorted’ signals thus corresponded to the

separate speech signals from each talker as they were presented in the simulated
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rooms whereas the ’clean’ signals corresponded to the underlying anechoic

speech signals that were used to generate the room simulations. Both attended

and ignored reconstruction filters covered time lags ranging from 0 ms to 500

ms post-stimulus. On average, roughly 13 minutes of data were used for training

the decoders in each condition.

To determine an unbiased estimate of the ridge regularization parameter, we

recorded additional 500-s of data for each subject with presentation of a single-

talker stimulus and empirically estimated the ridge parameter that provided the

highest reconstruction accuracy of the envelope on that data. After doing so,

the ridge parameter was set to a fixed high value of 214. We chose this approach

to prevent biasing the decoding performance by optimizing the ridge parameter

on the same multi-talker data also used for testing as done in previous work

(Crosse et al., 2015; Mirkovic et al., 2015). For comparison, we also performed

our analyses using the former approach which tunes the ridge parameter for

each acoustic condition. We found that the two regularization approaches led

to highly similar results.

In listening scenarios with multiple talkers, there is a risk that the subjects’

attention might be caught by unattended speech streams if the attended speech

stream contains excessively long periods of silences. Moreover, endogenous

neural activity during silent periods cannot be accounted for by the temporal

fluctuations in the envelope with a linear model. In contrast to previous studies

where longer periods of silence in the presented speech stimuli were truncated

(Ding and Simon, 2012a,b; Kong et al., 2014, 2015; Koskinen et al., 2013; Mirkovic

et al., 2015; O’Sullivan et al., 2014) , we did not shorten silent periods in the

presented speech stimuli in order to preserve the natural fluctuations of the

speech. Instead, segments of data where either the attended or the unattended

speech stream contained periods of silence longer than 500 ms were discarded

from the analysis. The same criterion for removal of silences was used for the

attended and the unattended speech streams. We finally selected 40-s of data

from each trial (excluding the first second of each trial) for the subsequent data

analysis, after truncating silent periods in the attended and the unattended

speech stream.

Channel selection and stimulus reconstruction

To investigate how accurately the identity of attended speakers can be decoded

using a subset of the scalp EEG electrodes, we employed an iterative backward
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channel-selection approach (Mirkovic et al., 2015). Specifically, we sought

to find spatially sparse models by iteratively removing channels that did not

contribute significantly to the prediction of the speech envelope. We did this

by first fitting reconstruction filters to the training data using all channels and

all post-stimulus time-lags between 0-ms and 500-ms. We then sequentially

removed individual channels with the lowest root-mean-square filter weights

across all lags. The backward stepwise selection scheme was combined with

ridge regression at each iteration, with the ridge parameter still fixed to 214.

Decoding accuracies were evaluated on non-overlapping test blocks of varying

duration from the left-out trial ranging between 5-s and 40-s.

Temporal response functions

One shortcoming of the backward model (sections 4.2.6 and 4.2.6) is that the

filter weights cannot directly be interpreted as a measure of stimulus-related

neural activity (Haufe et al., 2014). The filters can exploit both stimulus-related

activity but also activity related to other spatially correlated brain processes to

discriminate the attended and unattended signals. Instead, a forward model

that maps in the opposite direction from the stimulus input to the EEG responses

can be used to characterize the stimulus-evoked cortical response (Di Liberto

et al., 2015; Ding and Simon, 2012a,b; Lalor et al., 2009a; Power et al., 2012). We

used this approach to find filters, referred to as temporal response functions

(TRFs), that map linearly from the time-lagged speech envelope S (t ) to the EEG

channel responses R (t , n ):

R̂ (t , n ) =
L
∑

l=1

h (τL , n )S (t −τl ) (4.2)

The weights of the temporal response function h (τl , n ) can be viewed as

an averaged evoked-response elicited by the continuous speech stimulus over

a finite range of latencies τ= {τ1,τ2, ...τL} at electrode n . We estimated TRFs

both for the attended and unattended speech as well as for the clean and dis-

torted signals. As for the backward reconstruction models, we estimated the

filter coefficients by ridge regression. The ridge parameter was again tuned to

give highest cross-validated prediction accuracies (as indexed by Pearson’s cor-

relation between estimated and recorded EEG responses) on the single-talker

EEG data recorded from each subject. All time-lags ranging from 0 ms to 500

ms post stimulus were considered for this analysis.



54
4. EEG correlates of entrainment to speech envelopes in reverberant,

multi-talker environments

Evaluating the significance of decoding accuracies

Permutation tests were used to assess whether the decoding accuracies differed

significantly from chance-level (Noirhomme et al., 2014). To generate a null-

distribution of random classification accuracies, we randomly permuted the

labels of the target talker (attended/unattended), fitted reconstruction filters

and computed leave-one-out decoding accuracies. This procedure was repeated

m = 2048 times for each subject in each listening condition. From the obtained

distribution, we estimated p -values as p = (b+1)/(m+1), where b is the number

of elements in the null distribution exceeding the actual observed decoding

accuracy (Phipson and Smyth, 2010). We considered results to be statistically

significant if p < 0.05. We employed a permutation test procedure rather than

binomial tests (Mirkovic et al., 2015; O’Sullivan et al., 2014) since parametric

tests can yield biased estimates of significance for cross-validated classification

accuracies (Noirhomme et al., 2014).

Statistical analysis

The accuracies of the EEG attention decoding and the behavioral comprehen-

sion data were analyzed using generalized linear mixed models (GLMMs) with

logit link functions using the lme4 package in the R environment (Bates et al.,

2014). The models all included random effects of subjects on model intercepts

and the different listening environments (i.e., two-talker anechoic, two-talker

mild reverberation, two-talker high reverberation and 8-talker mild reverbera-

tion) as fixed effects. The model reported in section 3.3 included both listening

environments and decoder type (attended decoder or unattended decoder) to

examine potential interactions between attention and the acoustic conditions.

To obtain p -values for the statistical significance of the fixed factors of inter-

est, we compared nested models (models with and without the given factor)

using likelihood ratio tests, as sample sizes in all cases were large relative to the

number of factors being tested.

4.3 Results

4.3.1 Behavioral results

Overall, the subjects responded accurately to the comprehension questions in

all conditions (Figure 4.1B). Importantly, there were no statistical differences
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Figure 4.1: (A) Envelope of a single, representative speech signal in the considered listening
environments with varying amounts of reverberation. (B) Percentage of correctly answered
comprehension questions related to the content of the attended stories in the different listening
conditions presented via headphones (gray) or loudspeaker array (black). Error bars represent
upper 95%-confidence limits estimated by bootstrap sampling. (C) Schematic of source-receiver
configurations in the two-talker and 8-talker listening scenarios. The listener was placed in the
center 2.4 meters from the concurrent talkers. The two target talkers were positioned ±60o along
the azimuth direction relative to the listener. In the 8-talker scenario, multi-talker babble from six
additional talkers (represented here as dashed circles) were presented at a lower sound pressure
level.

between the different acoustic conditions in terms of the percentage of cor-

rectly answered questions in either group of participants (Bonferroni corrected;

headphone listening: χ2(2) = 4.77, p > 0.18; loudspeaker listening: χ2(3) = 7.61,

p > 0.11).

4.3.2 Neural decoding of attended speech in reverberant environments

Figure 4.2 shows the degree to which the sound envelope of the attended speech

signals could be decoded from single-trial, 64-channel EEG data in the different

acoustic environments. The results shown in Figure 4.2 were all obtained using

decoders trained on the attended speech streams. The figure shows (A) atten-

tion decoding accuracies and (B-C) reconstruction accuracies obtained with de-

coders trained to reconstruct either the envelope of the speech streams distorted

by reverberation (gray bars) or the envelope of their clean versions (white bars).

Across the different listening conditions, envelope reconstructions (Figure 4.2B-

C) were consistently more correlated with the attended (rattended) relative to
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the unattended (runattended) speech envelopes (paired t-test, t (145) = 34.86,

p < 10−5). This resulted in equally high decoding accuracies (Figure 1A) in the

different acoustic scenarios (grand mean: 87.1 % correct, SD=8.8 %). Linear

mixed-effects models revealed that there was no main effect of the different

acoustic conditions and decoding strategies (decoding on clean or distorted en-

velopes) on the decoding accuracies, neither for the subjects listening to speech

presented over the multi-loudspeaker array (χ2(6) = 9.17, p > 0.33, Bonferroni

corrected) nor for the subjects listening to the acoustic simulations through

earphones (χ2(4) = 1.91, p = 1, Bonferroni corrected).

In the listening conditions with no or low reverberation and in the condition

with multiple competing talkers, the reconstructed envelopes correlated equally

well with the envelopes of the original ’clean’ speech streams as with those of

the speech streams distorted by reverberation. In the highly reverberant con-

dition, however, the neural reconstructions of attended speech streams were

more strongly correlated with the envelopes of the clean speech streams than

with the envelopes of the reverberant speech streams (paired t-tests, Bonfer-

roni corrected; earphone presentation, t (359) = −9.82, p < 10−5 loudspeaker

presentation t (113) =−3.89, p < 0.0017).

4.3.3 Effects of attention on noise-robust speech processing

To further investigate potential interactions between selective auditory attention

and the different room conditions, we compared the performance of attended

and unattended decoders trained at different stimulus-response latencies. Fig-

ure 4.3(A-B) shows the scalp topographies of the reconstruction filter weights

used to predict envelopes of either the attended (A) or unattended (B) speech

streams. At latencies in the 150-200 ms range, the attended reconstruction

filters all exhibit positive weights at centro-temporal electrodes bilaterally, con-

sistent with previous findings (Mirkovic et al., 2015; O’Sullivan et al., 2014). The

unattended reconstruction filters show the opposite pattern of the attended

decoders, with negative weights at the same positions for similar late time lags

(cf. O’Sullivan et al., 2014). Panel (C-D) show the classification rates obtained

with attended (C) and unattended (D) decoders at individual time-lags. While

a peak in decoding performance was observed at latencies near 188 ms in all

acoustic conditions for the attended decoder, a similar peak was only observed

in the anechoic condition for the unattended decoder.

Fixed-effects analyses of the decoding accuracies at the location of the peak
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Figure 4.2: Reconstruction of attended speech envelopes from single-trial EEG responses to
speech mixtures in different acoustic conditions: anechoic, low reverberation, low reverberation
8-talker cocktail party, and high reverberation. Top row: Results based on headphone presenta-
tion. Bottom row: Results based on multi-loudspeaker simulations. (A) Decoding accuracies
based on neural reconstructions of the envelopes of the reverberant speech signals (gray) and
the envelope of the corresponding clean signals (white). The error bars show 95%-confidence
intervals of the mixed effects analyses. (B) Correlations between the neural reconstructions and
the envelope of the attended (rattended) and ignored (runattended) speech streams. The height of each
bar represents the average correlation across all subjects. Error bars represent 95%-confidence
limits on the mean estimated by bootstrap sampling. Asterisks indicate significant differences
(p < 0.05, paired t-tests, Bonferroni corrected). (C) Comparison of reconstruction accuracies for
each participant for the attended and unattended speech. The contours depict the empirically
estimated probability distribution (rattended,runattended) across listening conditions. For each trial,
the attended speaker was considered to be correctly classified if rattended > runattended. The dashed
lines depict rattended = runattended.

(188 ms) revealed significant interactions between attention (attended/unattended

decoder) and acoustic condition (anechoic, mild reverberation, high reverber-

ation), both for decoding based on clean envelopes (χ2(2) = 9.26, p < 0.0196,

Bonferroni corrected) and for decoding based on reverberant envelopes (χ2(2) =

11.58, p < 0.006, Bonferroni corrected). Post hoc pairwise comparisons revealed

that the decoding accuracies for the unattended decoders were significantly

higher in the anechoic conditions compared to the mildly reverberant condition

(clean envelopes: z = 3.62,p < 0.0036, Bonferroni corrected; reverberant en-

velopes: z = 4.27,p < 0.00023, Bonferroni corrected) and compared to the highly
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Figure 4.3: Neural decoding of attended and unattended speakers at different time-lags. Topogra-
phies of the lag-specific attended (A) and unattended (B) decoder weights averaged across sub-
jects at individual post-stimulus latencies. Average decoding accuracies at individual stimulus-
response latencies are shown for the attended (C) and unattended (D) decoders. In contrast to
decoding of the attended speech, decoding of the unattended speech was significantly affected
by the acoustic environment. The dashed horizontal line indicates the chance-level decoding
estimated as the 95% upper limit of the permutation distribution across conditions at 188-ms.

reverberant conditions (clean envelopes; z = 6.45, p < 10−5, Bonferroni cor-

rected; reverberant envelopes; z = 7.12, p < 10−5, Bonferroni corrected), while

the attended decoders did not differ in accuracy between any of the three listen-

ing conditions. However, the decoding accuracies obtained with lag-specific

unattended decoders at 188 ms were statistically significant (p < 0.05, permuta-

tion test) for 10 (of 26) subjects in the anechoic condition, for only 4 subjects in

the mildly reverberant conditions, and for 2 subjects in the highly reverberant

conditions. In contrast, the lag-specific (188 ms) attended decoders yielded

statistically significant classification accuracies (p < 0.05, permutation test) for

21 subjects in the anechoic condition, for 24 subjects in the mildly reverberant

condition and for 22 in the highly reverberant condition.

4.3.4 Temporal response functions

The envelope reconstruction technique revealed noise-robust cortical repre-

sentations of the individual speech streams but does not provide a measure

of how the individual speech streams are transformed into cortical activity. To

characterize the average cortical response to the individual speech streams
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Figure 4.4: Results of the TRF analysis. A-B: Scalp topographies of the grand average TRFs at
different response latencies for the attended (A) and unattended (B) speech. C-D: The TRFs
averaged over all electrodes for the attended (C) and the unattended (D) speech streams in the
different listening conditions. In the reverberant listening scenarios, the TRFs are shown both for
the envelopes of the reverberant streams (black solid lines) and for the envelopes of their clean
versions (dashed lines).

more directly, we estimated TRFs for the different listening conditions (Figure

4.4). All of the attended TRFs had clear late response peaks at latencies near 188

ms, which were prominent over frontal electrodes. In contrast, the unattended

TRFs contained earlier peaks near 78 ms, but no distinct late peak. To assess

differences in the cortical response to the clean versus distorted envelope, we an-

alyzed differences in the TRF amplitudes at the position of the late peak. In both

reverberant rooms, we found a significantly enhanced response to the clean

envelope of the attended speech signal compared to the distorted signal (paired

t-tests, Bonferroni corrected; low reverberation, t (25) = 4.28, p < 0.0019; high

reverberation t (25) = 3.78, p < 0.007). The early peak of the unattended TRF

was significantly higher for the clean envelope in the highly reverberant room

(paired t-test, Bonferroni corrected; high reverberation t (25) = 4.73, p < 0.0006)

but not in the mildly reverberant room (t (25) = 2.47, p > 0.17).



60
4. EEG correlates of entrainment to speech envelopes in reverberant,

multi-talker environments

4.3.5 Effect of electrode number and trial duration on decoding ac-

curacy

To investigate which sensors contributed to decoding, we iteratively removed

electrodes and evaluated the decoder performance with a smaller subset of

electrodes and shorter durations of test segments (Mirkovic et al., 2015). For

this analysis, we focused on envelope decoding of the actual attended speech

streams (with distortion in the case of the reverberant rooms). Figure 4.5A shows

the average decoding performance across listening conditions as a function

of the number of electrodes and the test segment duration. Fewer electrodes

resulted in a slight improvement in performance with a peak in accuracy around

20 electrodes. The decoding accuracies remained statistically significant (p <

0.05, permutation testing) for all subjects with only 10 electrodes and 10-s

long test segments in the anechoic and mildly reverberant listening conditions.

Decoding based on 10 electrodes and 10-s segments was significantly above

chance in all except two subjects in the highly reverberant room and for all

except one subject in the 8-talker cocktail party condition. Figure 4.5B shows

the topography of electrodes retained at different selection steps. The selection

procedure suggested strong contributions to attention decoding from temporal

electrodes bilaterally, consistent with the spatial patterns of the decoder weights

at late stimulus-response latencies (Figure 4.3A).

4.4 Discussion

In the present study, we examined the effects of selective attention on cortical

entrainment to competing speech streams in different real-life listening sce-

narios. Using a stimulus reconstruction approach, it was shown that cortical

tracking of an attended speech source was robust to convolutive and additive

distortions in the acoustic input. In the considered listening scenarios, speech

comprehension was found to be unaffected even in the reverberant scenarios

with multiple interfering talkers, which was mirrored by robust cortical envelope

tracking and accurate attentional decoding from single-trial EEG data.
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Figure 4.5: Decoding accuracies (percentage correctly classified data segments) as a function
of the number of EEG electrodes and duration of the EEG test data segments. (A) Group-mean
decoding accuracies across all subjects and all listening conditions. (B) Topographies illustrating
the relative number of retained electrodes across all subjects and listening conditions at different
iterations of the backward channel-selection. 100 % represents that all of the attended recon-
struction filters contained a given electrode at a given iteration. Across subjects, centro-temporal
electrodes bilaterally were most frequently retained.

4.4.1 Robust cortical representations of attended speech in different

listening environments

In this study, we considered the speech envelope reconstructed from neural

responses as a measure of cortical speech tracking. In the highly reverberant

environments, we found that the neural response tracked the underlying clean

speech signal more accurately than the presented speech stimulus arriving at

the ears of the listener (Figure 4.2B). Different reconstruction accuracies for

the clean and the distorted signals emerged only in the highly reverberant con-

dition, most likely due to the fact that the clean and distorted envelopes are

themselves highly correlated at low or moderate levels of reverberation. An

enhanced cortical representation of the clean signal, was supported by the

TRF analysis showing significantly higher TRF response amplitudes for the

clean signal in both the mildly and highly reverberant room. Accurate neural

representation of the original clean speech signal is consistent with stimulus

reconstruction results obtained with population responses reported in animal

physiology, suggesting that speech signals distorted by reverberation or sta-

tionary noise are represented in a noise-invariant manner at the level of the

auditory cortex (Mesgarani et al., 2014a). In the current study, simulations of

real-life scenes provided acoustic cues for sound source segregation that al-
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lowed listeners to maintain equally high speech comprehension levels with the

different distorted inputs. A number of previous studies have reported acous-

tic distortions to reduce cortical speech tracking in humans (Ding and Simon,

2013; Ding et al., 2014; Doelling et al., 2014; Peelle et al., 2012; Vander Ghinst

et al., 2016) and to decrease the differential responses between attended and

unattended signals (Kong et al., 2015; Rimmele et al., 2015). However, reduced

responses in the theta-band were also correlated with reduced speech intelli-

gibility created by these distortions. This has been proposed to indicate that

cortical entrainment to speech mainly reflects rhythmic variations in high-level

speech features, such as phoneme onsets, that typically co-vary with acoustic

envelope fluctuations (Luo and Poeppel, 2007; Zoefel and VanRullen, 2015).

In our study, robust tracking of intelligible but distorted signals is consistent

with the notion that intelligibility plays an important role for reliable cortical

tracking of speech (Peelle et al., 2012). However, although cortical envelope

tracking is enhanced during comprehension, envelope tracking has also been

observed with unintelligible speech stimuli (Howard and Poeppel, 2010; Mill-

man et al., 2015), non-speech sounds (Lalor et al., 2009a), or with speech sounds

in non-human primates (Steinschneider et al., 2013). Reduced speech-tracking

responses observed with distorted speech stimuli in previous studies (Kong

et al., 2015; Rimmele et al., 2015) may also be attributed to the loss of acoustic

cues hindering succesful segregation of speech streams. Stream segregation is,

in its own right, a requirement for object-based selective attention and thus for

successful speech comprehension in complex auditory scenes. Noise-robust

cortical representations of the attended speech signal found in the current

study could thus be attributed to successful formation and selection of auditory

objects enabled by real-world acoustic cues.

The ability to comprehend the target speech may, however, provide addi-

tional cues that facilitate noise-robust tracking of the speech envelope. It has

been proposed that cortical speech entrainment mainly reflects listeners’ ability

to parse high-level speech units at multiple time scales (e.g., phonemes, syl-

lables, phrases) that often co-vary with envelope fluctuations (Ghitza, 2011;

Ghitza and Greenberg, 2009; Giraud and Poeppel, 2012; Luo and Poeppel, 2007;

Peelle and Davis, 2012; Zoefel and VanRullen, 2015). Although we interpret

the observed enhanced responses to the original clean envelope to indicate a

noise-robust cortical representation of the acoustic signal, this does not rule

out a role of active tracking of higher-level speech features. Intelligible speech
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provides important contextual information that allows listeners to anticipate

the onset of forthcoming speech events (Golumbic et al., 2013; Peelle et al.,

2012). The predictability of an intelligible sound stream has been proposed to

enable a phase alignment of neuronal excitability with points in time where the

attended signal is expected (Giraud and Poeppel, 2012; Lakatos et al., 2005, 2008;

Peelle et al., 2012; Schroeder and Lakatos, 2009). In complex scenarios with

competing sound sources, the presence of contextual linguistic information

that allows listeners to predict forthcoming events may thus modulate oscilla-

tory activity in auditory cortex to ensure robust encoding of relevant acoustic

information (Golumbic et al., 2013; Schroeder and Lakatos, 2009). However, the

precise nature of potential top-down contributions of speech comprehension

on cortical envelope tracking cannot be determined from the current study.

Although our results suggested cortical representations that resembled the

clean signals more than the reverberant input, we did not find significant differ-

ences in attention decoding accuracies based on clean or distorted signals. A

possible explanation for this may be that sufficient information about the at-

tended speech streams was already captured by the distorted speech envelopes

for single-trial attention decoding. Yet, we also found that the unattended signal

was only decodable in the anechoic condition, in contrast to the equally high

decoding accuracies observed for the attended speech across all acoustic con-

ditions (Figure 4.3D). This might suggest that attention additionally promotes

noise-robust envelope tracking. We note that the low reconstruction accura-

cies reported in figure 4.2B for unattended speech in anechoic conditions were

based on decoders trained to identify the attended talker. In contrast, the de-

coding accuracies reported in Figure 4.3D were obtained with decoders trained

to identify the unattended talker. A higher decoding accuracy in the anechoic

condition here implies that the unattended decoders could extract the unat-

tended speech stream separately from the attended speech stream. Moreover,

the unattended speakers were only decodable in anechoic conditions at later

latencies ( 188 ms, in accord with (O’Sullivan et al., 2014)), but the TRFs sug-

gested that envelope fluctuations in the unattended speech stream elicited early

( 78 ms) positive responses. This could suggest that the unattended decoders

exploit an active suppression mechanism for unattended sounds in multi-talker

scenarios occurring at later processing stages (Kong et al., 2014) and that the

early positive peaks 78 ms post stimulus do not sufficiently discriminate the

competing speech streams.



64
4. EEG correlates of entrainment to speech envelopes in reverberant,

multi-talker environments

4.4.2 Decoding of attended speech with single-trial EEG responses

The classification accuracies obtained with the attended decoders in the differ-

ent acoustic environments were of the same order of magnitude as those previ-

ously reported with two-talker stimuli in ’clean’ anechoic conditions (Mirkovic

et al., 2015; O’Sullivan et al., 2014). Here we achieved a comparable decoder

performance with individualized decoders and shorter segments of test data

(<40-s, see Figure 5). We observed an increase of the decoding accuracy when

iteratively removing electrodes down to about 25 electrodes. This could be

attributed to the removal of noisy or ”irrelevant” electrodes that did not con-

tribute significantly to predicting the target envelopes. With high-dimensional

EEG data, ridge-regularized regression shrinks the size of many filter coeffi-

cients (particularly in low-variance directions) to prevent overfitting, rather

than enforcing filter weights to be zero. By iteratively removing channels and

re-fitting the filters, the effects of single poor channels on model fits will there-

fore become less prominent. In O’Sullivan et al., 2014, speech mixtures were

presented dichotically and listeners were instructed to attend to the speech

stream presented in one ear while ignoring the speech stream presented to the

other ear. Similarly, in Mirkovic et al., 2015 the subjects were presented with

spatially separated (±30o along the azimuth) speech streams and instructed to

selectively direct attention to the same speaker throughout the experiment. The

speaker locations were then balanced out across subjects rather than within

subjects. Since spatial auditory attention may have distinct spatio-spectral

signatures in the EEG (Kerlin et al., 2010) that can be modulated in synchrony

with speech modulations (Wöstmann et al., 2016), the fixed spatial position of

the attended talker could potentially bias the decoders. In the present study, we

randomized both position and gender of the target speakers across trials within

subjects to remove potential biases of talker identity and spatial positions on the

decoders. Our results suggest that the attended decoders generalize well across

characteristics of the individual talker and spatial positions of target speakers.

4.5 Conclusion

We found noise-robust and stable neural representations of attended speech in

real-life acoustic scenes where the target speech remained highly intelligible

despite signal distortions. Using a stimulus-reconstruction filtering technique,
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we found that sufficient information about attended talkers could be extracted

from single-trial EEG recordings to decode the attentional selection of listeners

in multi-talker scenarios. Our results suggest that the selective cortical tracking

of competing speech streams forms neural representations of attended speech

that are stable against interfering signals and varying amounts of reverberation.
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5
A Comparison of Regularization

Methods in Forward and Backward
Models for Auditory Attention Decodinga

Abstract

The decoding of selective auditory attention from noninvasive elec-

troencephalogram (EEG) data is of interest in brain computer inter-

face and auditory perception research. The current state-of-the-art

approaches for decoding the attentional selection of listeners are

based on linear mappings between features of sound streams and

EEG responses (forward model), or vice versa (backward model). It

has been shown that when the envelope of attended speech and EEG

responses are used to derive such mapping functions, the model

predictions can be used to discriminate between attended and unat-

tended talkers. However, the predictive performance of the models

is dependent on how the model parameters are estimated. There

exist a number of model estimation methods that have been pub-

lished, along with a variety of datasets. It is currently unclear if any

of these methods perform better than others, as they have not yet

been compared side by side on a single standardized dataset in a

controlled fashion. Here, we present a comparative study of the

ability of different estimation methods to classify attended speakers

from multi-channel EEG data. The performance of the model esti-

mation methods is evaluated using different performance metrics

on a set of labeled EEG data from 18 subjects listening to mixtures of

two speech streams. We find that when forward models predict the

a This chapter is based on: Wong, D. E.; Fuglsang, S. A.; Ceolini, E.; Hjortkjær, J. H.; Slaney, M.;

de Cheveigné, A. (2018). ”A Comparison of Regularization Methods in Forward and Backward

Models for Auditory Attention Decoding”. Frontiers in Human Neuroscience

67
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EEG from the attended audio, regularized models do not improve

regression or classification accuracies. When backward models de-

code the attended speech from the EEG, regularization provides

higher regression and classification accuracies.

5.1 Introduction

A fundamental goal of auditory neuroscience is to understand the mapping be-

tween auditory stimuli and the cortical responses they elicit. In magneto/electro-

encephalography (M/EEG) studies, this mapping has predominantly been mea-

sured by examining the average cortical evoked response potential (ERP) to a

succession of repeated short stimuli. More recently, these methods have been

extended to continuous stimuli such as speech by using linear system-response

models, broadly termed ‘temporal response functions’ (TRFs), that are esti-

mated using system identification methods. The TRF is a stimulus-response

model that characterizes how a unit impulse in an input feature corresponds to

a change in the M/EEG data. TRFs can be used to generate continuous predic-

tions about M/EEG responses as opposed to characterizing the response (ERP)

to repetitions of the same stimuli. Importantly, it has been demonstrated that

the stimulus-response models can be extracted both from EEG responses to

artificial sound stimuli (Lalor et al., 2009a; Lalor et al., 2006; Power et al., 2011)

but also from EEG responses to naturalistic speech (Lalor and Foxe, 2010). A

number of studies have considered mappings between the slowly varying tem-

poral envelope of a speech sound signal (<10 Hz) and the corresponding filtered

M/EEG response (Ding and Simon, 2012a,b, 2013, 2014; Lalor and Foxe, 2010).

However, TRFs are not just limited to the broadband envelope, but can also be

obtained with the speech spectrogram (Ding and Simon, 2012a,b), phonemes

(Di Liberto et al., 2015), or semantic features (Broderick et al., 2018). This has

opened new avenues of research into cortical responses to speech, advancing

the field beyond examining responses to repeated isolated segments of speech.

TRF methods have proven particularly apt for studying how the cortical

processing of speech features are modulated by selective auditory attention.

A number of studies have considered multi-talker ‘cocktail party’ scenarios,

where a listener attends to one speech source and ignores others. It has been

demonstrated that both attended and unattended acoustic features can be

linearly mapped to the cortical response (Ding and Simon, 2012a,b; Golumbic
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et al., 2013; Power et al., 2012; Puvvada and Simon, 2017).

Conversely, the same linear model, which maps speech features to the corti-

cal response (forward direction), can be adapted to provide a linear mapping

from the cortical response to the speech features (backward direction) (Bialek

et al., 1990; Ding and Simon, 2012a,b; Fuglsang et al., 2017; Mesgarani and

Chang, 2012; Mesgarani et al., 2009; Mirkovic et al., 2015; O’Sullivan et al., 2014;

Van Eyndhoven et al., 2017). The mapping from acoustic features to cortical

responses is typically referred to as a forward model (or TRF), whereas the

mapping from cortical responses to acoustic features is referred to as a back-

ward model (Haufe et al., 2014). The quality of model fit reflects the degree

to which cortical activity is driven by stimulation. In a cocktail party scenario,

the quality of fit between each of the speech streams and the cortical activity

can be used to infer which speech stream is being attended. Differences in the

accuracy of forward/backward model-derived estimates between the attended

and unattended speech signal can be used to predict or ‘decode’ to whom a

listener is attending based on unaveraged M/EEG data. Single-trial measures

of auditory selective attention in turn suggests BCI applications, for instance,

for cognitively-steered hearing aids (Das et al., 2016; O’Sullivan et al., 2017b;

Van Eyndhoven et al., 2017; Zink et al., 2017).

The ability of forward/backward stimulus-response models to generalize to

new data is generally limited by the need to estimate a relatively large number

of parameters based on noisy single-trial M/EEG responses. Like many aspects

of machine learning, this necessitates regularization techniques that constrain

the model coefficients to prevent overfitting (Crosse et al., 2016b; Holdgraf et al.,

2017). A number of methods for regularizing the forward/backward stimulus-

response models have been presented in various studies (David et al., 2007;

Goutte et al., 2000; Machens et al., 2004; Theunissen et al., 2000, 2001; Thorson

et al., 2015). Each of these methods attempt to address the challenge of having

sufficient data to compute a reliable stimulus-response mapping function. To

reduce the data requirement, regularization can be applied in the form of a

smoothness and/or sparsity constraint.

To date, little work has been done to compare these methods against each

other. A meta-analysis would be difficult as many variables, such as subjects,

stimuli and data processing are different between each study. The present paper
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uses a standardized publicly available dataseta (Fuglsang et al., 2018), based on

the attended-versus-unattended talker discrimination task, as well as prepro-

cessing and evaluation procedures to compare these algorithms. In addition,

the present paper examines the relationship between different evaluation met-

rics to highlight their similarities and differences. The methods for computing

forward/backward stimulus-response models have been implemented in the

publicly available Telluride Decoding Toolboxb.

5.2 Material and Methods

Temporal response functions can be used to predict the EEG response to a

multi-talker stimulus from the attended speech envelope or, alternatively, the

equation can be adapted to reconstruct the attended speech envelope from the

EEG response. The first case is denoted as a “forward model” (as it maps from

speech features to neural data) and the second as a “backward model” (as it

maps from neural data back to speech features) (Haufe et al., 2014).

5.2.1 Stimulus-Response Models

The linear stimulus-response models below described below map a matrix X

(stimulus features for a forward model, EEG for a backward model) to a matrix

Y (EEG channels for a forward model, stimulus features for a backward model):

Ŷ=XW, (5.1)

where X= [xt ,( f ,c )] is a multichannel data matrix (channels indexed by c ),augmented

to include time-lagged versions of the data (lags indexed by f ), and Ŷ= [yt ] is

the model estimate in the form of a vector indexed by time t . Time lags, lim-

ited to a range such as -500 to + 500 ms, allow the model to handle delays and

convolutional mismatch between X and Y. Dimensions c and f are combined

when performing matrix multiplications.

In the following subsections we introduce different approaches to estimating

the linear model parameters, W. Each method uses different regularization

techniques to optimize the generalizability of the mapping functions.

a http://doi.org/10.5281/zenodo.1199011
b http://www.ine-web.org/software/decoding

http://doi.org/10.5281/zenodo.1199011
http://www.ine-web.org/software/decoding
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Ordinary Least Squares (OLS)

The cost function that is minimized when solving the regression model is:

L (W) = (Y−XW)T (Y−XW). (5.2)

The filter coefficients of this model can be estimated via ordinary least

squares:

W=
�

XT X
�−1

XT Y, (5.3)

where XT X is the estimated autocovariance matrix and XT Y is the estimated

cross-covariance matrix. The ordinary least-squares solution was here esti-

mated using the Cholesky decomposition method, via the mldivide routine in

Matlab. One advantage of the OLS estimator is that it has no additional hyper-

parameters that must be optimized. However, in practice the OLS estimator

is often outperformed by the regularized solutions described in the following

subsections. This is often the case when the regressor, X, is high-dimensional

and has a poorly estimated covariance matrix given limited amounts of training

data, or contains auto-correlations and/or cross-channel correlations resulting

in a low rank matrix. In other words, the inverse problem is ill-posed. Such is

the case when using non-stochastic data for X, such as speech or EEG data.

If X were white and standardized, the autocovariance matrix would be a mul-

tiple of the identity matrix, and the OLS and regularized approaches reduce to a

straight-forward cross-correlation, also known as reverse correlation (Ringach

and Shapley, 2004).

Ridge

Ridge regression minimizes the residual sum of squares, but puts an L2 con-

straint on the regression coefficients (Broderick et al., 2018; Crosse et al., 2016a;

Crosse et al., 2015; Di Liberto et al., 2015; Holdgraf et al., 2016; Machens et al.,

2003; O’Sullivan et al., 2017a). An L2 constraint smooths the regression weights

by penalizing the square of the weights in W with a regularization constant λ

for the ridge regression cost function:

L (W)λ = (Y−XW)T (Y−XW) +λWT W (5.4)

(Hastie et al., 2001; Machens et al., 2004). Ridge regression corresponds to
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imposing a Gaussian prior on the filter coefficients (Wu et al., 2006). The ridge

solution is:

W=
�

XT X+λI
�−1

XT Y, (5.5)

where λ is the regularization parameter that controls the amount of parameter

shrinking.

Low-Rank Approximation (LRA)

The LRA-based regression relies on a low-rank approximation of the covariance

matrix, XT X. This is achieved by employing a singular value decomposition

(SVD) of XT X:

XT X=USVT , (5.6)

where U and V are orthonormal matrices that contain respectively the left and

right singular vectors, and where S is a diagonal matrix, S= diag(s1, s2, ..sd ) with

sorted diagonal entries. Since XT X is a positive semidefinite matrix we have

U = V. LRA uses a rank-K approximation of XT X by only retaining the first

1≤ K ≤ d diagonal elements of S. The cost function is:

L (W)K = (Y−XW)T (Y−XW)−WT VK +1...d SK +1...d ,K +1...d VT
K +1...d W, (5.7)

where VK +1...d are the K + 1...d columns of V and SK +1...d ,K +1...d is the square

matrix formed by taking the K +1...d rows and columns of S. By forming Ŝ
−1
=

diag(1/s1,1/s2, ...,1/sK ,0..0,0,0), the regression coefficients can be estimated

from:

W=
�

UŜ
−1

VT
�

XT Y. (5.8)

The number of diagonal elements, K , to retain are typically chosen such that

a diagonal element is retained if the sum of the eigenvalues to be kept cover a

fraction λ of the overall sum, or 0<

∑K
i=1 si

∑d
i=1 si

<λ≤ 1. Note that the regularization

parameter, λ, here is analogous toλ for Ridge Regression, but that the values are

not comparable between the two. LRA is the term used in systems identification

(Marconato et al., 2014), however, this type of regression has also been referred
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to as normalized reverse correlation (NRC) in auditory neuroscience literature

(David et al., 2004, 2007; Mesgarani and Chang, 2012; Mesgarani et al., 2009;

Theunissen et al., 2000, 2001).

Shrinkage

Shrinkage (Blankertz et al., 2011; Friedman, 1989) is a method used for biasing

the covariance matrix by flattening its eigenvalue spectrum with some tuning

parameter, λ. In the context of regression, the Shrinkage cost function is:

L (W)λ = (Y−XW)T (Y−XW) +λWT (νI−XT X)W, (5.9)

where ν is here defined as the average eigenvalue trace of the covariance matrix
�

XT X
�

. The solution for the cost function is:

W=
�

(1−λ)XT X+λνI
�−1

XT Y. (5.10)

When λ= 0, it becomes the standard ordinary least squares solution. When

λ= 1, the covariance estimator becomes diagonal (i.e. it becomes spherical),

reducing the Shrinkage equation to a cross-correlation (Blankertz et al., 2011).

These regularization schemes are related. Whereas Ridge Regression and

Shrinkage both penalize extreme eigenvalues in a smooth way, LRA discards

eigenvalues. Ridge and Shrinkage in other words flatten out the eigenvalue

trace. Ridge shifts it up, and Shrinkage shrinks it towards an average value ν

(Blankertz et al., 2011), whereas LRA cuts if off.

Tikhonov

The scheme which we shall refer to as Tikhonov regularization, is a first-derivative

type of Tikhonov regularization (Tikhonov, 1963) that takes advantage of the fact

that there is usually a strong correlation between adjacent columns of X when

X includes time shifts, because of the strong serial correlation of the stimulus

envelope (for the forward model) or the filtered EEG (for the backward model).

In other words, Tikhonov regularization imposes temporal smoothness on the

model. Tikhonov regularization achieves temporal smoothness by putting a

constraint in the derivative of the filter coefficients (Crosse et al., 2016b; Crosse

et al., 2015; Goutte et al., 2000; Lalor et al., 2006; Lalor and Foxe, 2010). Here we

focus on first order derivatives of the filter coefficients and assume that the first
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derivatives can be approximated by
∂ wi

∂ i
≈ (wi+1−wi ) for any neighboring filter

pairs wi+1 and wi . This type of regularization is more generally referred to as

1st order Tikhonov regularization as it attempts to constrain the first derivative

of the filter via central difference approximations. This gives the cost function:

L (W)λ = (Y−XW)T (Y−XW) +λ
∑

i

(wi −wi+1)
2 (5.11)

Tikhonov regularized model filters can, under this approximation, be imple-

mented as:

W=
�

XT X+λM
�−1

XT Y, (5.12)

where

M=
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Note that cross-channel leakage can occur whenever the regressor, X, reflects

data recorded from multiple channels, as is the case with the backward model.

This means that filter endpoints can be affected by neighboring channels as a

result of the off-diagonal elements in the M matrix. Due to the potential for cross-

channel leakage, Tikhonov has been primarily used for the forward modeling

case (Crosse et al., 2016b). Despite the potential problems associated with cross-

channel leakage, we also report results obtained with Tikhonov regularization

for the backward model for completeness.

Elastic Net

Whereas the aforementioned regularization techniques often show improve-

ments over the ordinary least regression in terms of generalizability, they tend

to preserve all regressors in the models. This can e.g. result in nonzero filter

weights assigned to irrelevant features. Lasso regression attempts to overcome

this issue by putting an L1-constraint on the regression coefficients (Tibshirani,

1996). This serves to drive unnecessary coefficients in the model towards zero.
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Lasso has been found to perform well in many scenarios, although it was empir-

ically demonstrated that it is outperformed by Ridge regression in nonsparse

scenarios with highly correlated predictors (Tibshirani, 1996; Zou and Hastie,

2005). In such scenarios, Elastic Net regression (Zou and Hastie, 2005) has been

found to improve the predictive power of Lasso by combining Lasso with the

grouping effect of Ridge regression. The elastic net has two hyperparameters:

α controlling the balance between L1 (lasso) and L2 (ridge) penalties, and λ

controlling the overall penalty strength. For the purpose of this paper, we use a

readily available algorithm, GLMNET (Qian et al., 2013), for efficiently comput-

ing the elastic net problem. This is a coordinate descent algorithm for solving

the following problem:

argmin
W

1

2N
‖Y−XW‖2+λ

�

(1−α)‖W‖2/2+α‖W‖
�

. (5.13)

We used GLMNET for computing the Elastic Net solution for α= 0.25, α= 0.50,

α= 0.75 andα= 1.00. We will henceforth refer the last case as the Lasso solution.

The GLMNET has previously been used to estimate spectro-temporal receptive

models (e.g. (Willmore et al., 2016)).

5.2.2 Evaluating Performance

Characterizing Model Fit

While the objective function of linear models is minimizing the mean-squared-

error, the goodness of fit is typically analyzed in terms of Pearson’s correlation

between estimated and actual values for interpretability. The term regression

accuracy will henceforth be used to characterize the goodness of fit for models

trained and evaluated on attended audio features (ra t t e nd e d ). For forward mod-

els, regression accuracies were measured by the Pearson’s correlation between

the actual EEG and the EEG predicted by the attended envelope over the test

folds. This was done separately for each EEG channel. Similarly, for backward

models, regression accuracies were measured by the correlation between the

attended envelope and its EEG-based reconstruction. The regression accura-

cies were computed on test folds, using the nested cross-validation scheme

described in section 5.2.2. This procedure ensures that the test data is not used

during any part of the training process, including hyperparameter tuning. The

regression accuracies were averaged over all test folds. Other metrics for as-
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sessing the predictive/reconstructive performance of the models have been

previously proposed (Schoppe et al., 2016). However, for simplicity and to be

consistent with previous studies (Ding and Simon, 2012a,b; O’Sullivan et al.,

2014), this paper characterizes the goodness of the fit using Pearson’s correlation

coefficients.

In the forward case, the response at multiple EEG channels is predicted by

the model. Rather than using multiple correlation coefficients to characterize

the regression accuracy in this case, we chose to take the average of the correla-

tion coefficients between the predicted channels and the actual EEG data as a

validation score. We used the same metric over the test set to characterize the

fit of the model. In the backward case, characterizing the fit is straightforward

as the model predicts a single audio envelope that can be correlated with the

attended audio envelope.

Decoding Selective Auditory Attention

Performance was also evaluated on a classification task based on the forward/backward

stimulus-response model. The task of the classifier was to decide, on the basis

of the recorded EEG and the two simultaneous speech streams presented to

the listener (see Section 5.2.4), to which stream the subject was attending. The

classifier had to make this decision on the basis of a segment of test data, the

duration of which was varied as a parameter (1, 3, 5, 7, 10, 15, 20 and 30s), which

will be referred to as the decoding segment length. This duration includes the

kernel length of the forward/backward model (500 ms). The position of this

segment of data was stepped in 1s increments throughout the evaluated data.

As described further in section 5.2.2, a nested cross-validation loop was

used to tune the forward/backward stimulus-response model regularization

parameter (where applicable) on training/validation data and test the trained

classifier on unseen test data.

The classification relied on correlation coefficients between EEG and the

attended speech, and between the EEG and the unattended speech. These

correlation coefficients were computed over the aforementioned restricted

time window. These coefficients were used to classify whether the subject was

attending to one stream or the other. For a backward model, classification

hinged merely on which correlation coefficient was largest (stream A or stream

B). Performance of this classifier was evaluated on the test set. For a forward

model, the situation is more complex because there is one model per EEG
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channel. For each of the 66 channels a pair of correlation coefficients was

calculated (one each for unattended and attended streams), and this set of pairs

was used to train a support vector machine (SVM) classifier with a linear kernel

and a soft margin constant of 1. SVM classifiers were trained on the correlation

coefficient features over the validation set that was used for hyperparameter

tuning. The SVM classifier performance was finally evaluated on data from the

held out test fold.

The classifier score was averaged over all test folds. In every case, the classi-

fier trained over the entire training/validation set was tested on a short interval

of data, the duration of which was varied as a parameter, as explained above.

An illustration of this classification task is shown in figure 5.1.

Speech Stream A

Speech Stream B

rStream A rStream B
x66EEG

66 channels

W

x66

Predicted

EEG

SVMEEG Preprocessing

Audio Preprocessing

W

Forward Model Classi�cation Scheme

Backward Model Classi�cation Scheme

Speech Stream A

W

Speech Stream B

r Stream A r Stream B

Reconstructed attended audio

argmax

EEG
66 channels

EEG Preprocessing

Audio Preprocessing

Which is attended: Stream A or Stream B?

Which is attended: Stream A or Stream B?

Figure 5.1: Diagram of classification task. For the forward model, 66 EEG channels are predicted
from the speech stream A and B envelopes using the same linear mapping function, W. After
correlation with the 66 channel EEG data, this results in 66 correlation coefficients for each
speech stream, which are used as features for the SVM to distinguish the attended talker. For the
backward model, a single attended audio envelope channel is estimated from the EEG data using
the linear mapping function, W. After correlation with the speech stream A and B envelopes, a
single correlation coefficient for each speech stream is obtained. Classification of the attended
talker is performed by determining the larger coefficient.

Classification performance was characterized for different decoding seg-

ment durations using the raw classification score, receiver operating charac-

teristic (ROC) curve, and information transfer rate (ITR). The raw classification

score measured what proportion of trials were classified correctly. It should

be noted that in measuring classification performance, the two classes were

balanced. The ROC curve characterizes the true-positive and false-positive

rates for decoding segment trials where the classifier discrimination function

lies above a given threshold, as the threshold is varied. The classifier decision

function is the distance between the classified point and the decision boundary,

with the sign indicating the class label. In the case of an SVM classifier for the
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forward model, the decision function is a weighted sum of the input features

(correlations), plus a bias term. In the case of the argmax function for the back-

ward model, the decision function is the difference of the correlations between

the reconstructed attended audio and the two speech streams. Thresholding

the classifier discrimination function throughout the range of values it yields in

a dataset affects the number of correctly and incorrectly classified trials (above

threshold) out of the total number of correctly and incorrectly classified trials,

which are the true and false positive rates, respectively.

The ITR metric corresponds to the number of classifications that can be

reliably made by the system in a given amount of time. The dependency of

ITR on decoding segment length is a tradeoff between two effects. On one

hand, longer decoding segments allow more reliable decisions. On the other,

short durations allow a larger number of independent decisions. There is thus

an optimal decoding segment duration. A number of metrics to compute the

ITR have been proposed. The most common is the Wolpaw ITR (Wolpaw and

Ramoser, 1998), which is calculated in bits per minute as:

I T RW =V
�

log2 N +P log2 P + (1−P ) log2
1−P

N −1

�

, (5.14)

where V is the speed in trials per minute, N is the number of classes, and P is

the classifier accuracy. We also report the Nykopp ITR, which assumes that a

classification decision does not need to be made on every trial (Nykopp, 2001).

This can be done by first calculating the confusion matrix p for classifier outputs

where the classifier decision function magnitude exceeds a given threshold.

Typically the larger the classifier decision function magnitude, the more accurate

the classifier prediction. As such, raising the threshold on the decision function

magnitude results in more accurate classifications at the expense of foregoing a

classification decision on more trials. To obtain the Nykopp information transfer

rate, the threshold on the classifier decision function magnitude is adjusted to

maximize:

I T RN =V
�

max
p (x )

N
∑

i=1

M
∑

j=1

p (wi )p (ŵ j |wi ) log2 p (ŵ j |wi )−
M
∑

j=1

p (ŵ j ) log2 p (ŵ j )
�

,

(5.15)

where p (wi ) is the probability of the actual class being class i , p (ŵ j |wi ) is the

probability of the predicted class being class j given the actual class being class
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i , and p (ŵ j ) is the probability of the predicted class being class j . It is p (ŵ j |wi )

and p (ŵ j ) that are affected by decision function magnitude thresholding as this

limits the number of trials on which a classification decision is made.

Cross-Validation Procedure

The forward/backward stimulus-response models used in sections 5.2.2 and

5.2.2 were all trained and tested using cross-validation with a 10-fold testing

procedure involving nested cross-validation loops. This procedure ensures

that the test data used to evaluate the forward/backward model is not used

during any part of the training process. During this cross-validation procedure

the models were characterized under an N-fold testing framework where the

data was divided into 10 folds. In this outer cross-validation loop, one fold

was held out for testing (i.e. characterizing model fit and classifying the at-

tended stream), while data from the remaining 9 folds were used to compute

the forward/backward models using an inner cross-validation loop. This inner

cross-validation loop was used to tune the hyperparameters. The stimulus-

response models were in all cases fit to the envelope of the attended sound

streams during the training phase. The regularization parameter was swept

through a range of values to evaluate its effect on the correlation coefficient

between the model prediction/reconstruction and the actual measured data for

each inner cross-validation fold. For Ridge and Lasso regularization schemes

that allowed a regularization parameter between zero and infinity, a parameter

sweep was performed between 10−6 and 108 in 54 logarithmically-spaced steps.

This was done using the following formula:

λn =λ0×1.848n , n ∈ [0, 53], (5.16)

whereλ0 ≡ 10−6. For LRA, Elastic Net, and Shrinkage schemes, where the regular-

ization parameter range was between 0 and 1, a parameter sweep was performed

between 10−6 and 1 using a log-sigmoid transfer function that compresses the

values between 0 and 1 using the following iterative formula:

λn+1 = logsig(ln(λn )− ln(1−λn ) +0.475), n ∈ [0, 40]. (5.17)

The hyperparameter value that yielded the maximum correlation between

the model prediction/reconstruction and actual measured data, averaged across

all inner cross-validation folds, was used to evaluate the test set. Using this
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hyperparameter value, the weights of the models generated for each inner cross-

validation fold were then averaged to generate an overall cross-validated model

that could then be applied to the test set. It should be noted that for each test

fold, the hyperparameter value was selected independently.

5.2.3 Implementation

The implementations of the forward/backward stimulus-response model al-

gorithms used here are distributed as part of the Telluride Decoding Toolboxc,

specifically in the FindTRF.m function of that toolbox. Data preprocessing, model

training, and evaluation were implemented with the COCOHA Matlab Toolboxd.

5.2.4 Stimuli

A previous report gives a detailed description of the stimuli and data collection

procedure (Fuglsang et al., 2017). This dataset is available online (Fuglsang

et al., 2018). In brief, a set of speech stimuli were recorded by one male and one

female professional Danish speakers speaking different fictional stories. These

recordings were performed in an anechoic chamber at the Technical University

of Denmark (DTU). The recording sampling rate was 48 kHz. Each recording

was divided into 50-s long segments for a total of 65 segments.

5.2.5 Experimental Procedure

The 50-s long speech segments were used to generate auditory scenes compris-

ing a male and a female simultaneously speaking in anechoic or reverberant

rooms. The two concurrent speech streams were normalized to have similar

root-mean square values. The speech stimuli were delivered to the subjects

via ER-2 insert earphones (Etymotic Research). The speech mixtures were pre-

sented binaurally to the listeners, with the two speech streams lateralized at

respectively −60o and +60o along the azimuth direction and a source-receiver

distance of 2.4 meters. This was achieved using nonindividualized head-related

impulse responses that were simulated using the room acoustic modeling soft-

ware, Odeon (version 13.02). Each subject undertook sixty trials in which they

were presented the 50s-long speech mixtures. Before each trial, the subjects

c http://www.ine-web.org/software/decoding
d http://doi.org/10.5281/zenodo.1198430

http://www.ine-web.org/software/decoding
http://doi.org/10.5281/zenodo.1198430
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were cued to listen selectively to one speech stream and ignore the other. After

each trial, the subjects were asked a comprehension question related to the

content of the attended speech stream. The position of the target streams as

well as the gender of the target speaker were randomized across trials. More-

over, the type of acoustic room condition (either anechoic, mildly reverberant

or highly reverberant) were pseudo-randomized over trials. In the analysis,

data recorded from all acoustic conditions were pooled together. The reasons

for doing this were twofold. Firstly, it provides sufficient data for the stimulus-

response analysis. This is particularly important as insufficient data in worst

case can lead to poorer model estimates (Mirkovic et al., 2016). Secondly, by

using this approach we get a better idea of how well the models will generalize

to different experimental conditions. This is an important practical aspect, as

it gives a better estimate of how well a classifier will perform in different lis-

tening conditions (rather than just focusing on training on anechoic data and

evaluating on anechoic data).

5.2.6 Data Collection

Electroencephalography (EEG) data were recorded from 19 subjects in an elec-

trically shielded room while they were listening to the stimuli described above.

Data from one subject were excluded from the analysis due to missing data

from several trials. The data were recorded using a Biosemi Active 2 system,

with a sampling rate of 512 Hz. Sixty-four channel EEG data (10/20-system)

were recorded from the scalp. Six additional electrodes were used for recording

the EEG at the mastoids, and vertical and horizontal electrooculogram (V and

H-EOG). Approximately 1 hour of EEG data was recorded per subject. This

study was carried out in accordance with the recommendations of ‘Fundamen-

tal and applied hearing research in people with and without hearing difficulties,

Videnskabsetiske komitee’. The protocol was approved by the Science Ethics

Committee for the Capital Region of Denmark. All subjects gave written in-

formed consent in accordance with the Declaration of Helsinki.

5.2.7 Data Preprocessing

EEG Data

50 Hz line noise and harmonics in the EEG data were filtered out by convolution

with a 512
50 sample square window (the non-integer window size was imple-
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mented by interpolation) (de Cheveigné and Arzounian, 2017). The EEG data

was then downsampled to 64 Hz using a resampling method based on the Fast

Fourier Transform (FFT). To downsample, this method reduces the size of the

FFT of the signal by truncating high frequency components. An inverse FFT

is then used to restore the signal to the time domain. A 1st order detrend was

performed on the EEG data to minimize filter startup artifacts. EEG data were

highpassed at 0.1 Hz using a 4th order forward-pass Butterworth filter. The

group delay was less than 2 samples above 1 Hz.

The joint decorrelation framework (de Cheveigné and Parra, 2014) was em-

ployed to remove eye artifacts in an automated fashion. Let X = [xt j ] be a

matrix that contains EEG data from each electrode, j , for each time sample t . In

this implementation, a conservative eye artifact time-point detection was first

performed by computing a Z-score on 1-30 Hz bandpassed VEOG and HEOG

bipolar channels and marking time samples where the absolute Z-score on

either channel exceeded 4. This is similar to the eyeblink detection method

implemented in the FieldTrip EEG processing toolbox (Oostenveld et al., 2011).

This resulted in a subset of time samples, A, indexing the temporal locations of

each EOG artifact. An artifact covariance matrix RA =XT
A XA was then computed

from the EEG (and EOG) data, XA = [xa j ], at the artifact time samples a ∈ A.

After using principal component analysis to whiten RA and R, the generalized

eigenvalue problem was then solved for RAv = λRv, where R = XT X is the co-

variance matrix for the entire EEG dataset. The resulting eigenvectors V, sorted

by eigenvalue, explain the maximum difference in variance between the artifact

and data covariance matrices. Components corresponding to eigenvalues >

80% of the maximum eigenvalue were regressed out of the data. In practice, this

80% threshold is a conservative one, typically resulting in the removal of one or

two components. Lastly, the EOG channels were removed from the data, which

was then referenced to a common average over all channels.

For the forward/backward model analysis, the EEG was bandpassed be-

tween 1-9 Hz using a windowed sync type I linear-phase finite-impulse response

(FIR) filter, shifted by its group delay to produce a zero-phase (Widmann et al.,

2015) with a conservatively chosen order of 128 in order to minimize ringing

effects. This frequency range was selected as it has been shown that cortical

responses time-lock to speech envelopes in this range (O’Sullivan et al., 2014).

As part of the cross-validation procedure, individual EEG channels were finally

centered and standardized (Z-normalized) across the time dimension using the
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individual channel mean and standard deviation of the training data. A kernel

length of 0.5 s (33 samples) was used when computing the forward/backward

models.

Audio Features

The forward/backward stimulus-response model estimation methods used for

attention decoding attempt to characterize a relationship between features of

attended speech streams and EEG activity. We calculated temporal envelope

representations from each of the clean speech streams (i.e. without reverbera-

tion). We did not try to derive them from the reverberant or mixed audio data,

as explored elsewhere (Aroudi and Doclo, 2017; Fuglsang et al., 2017). In trials

with reverberant speech mixtures, we used envelope representations of the

underlying clean signals to estimate the models. To derive the envelope rep-

resentations, we passed monaural versions of both attended and unattended

speech streams through a 31-band gammatone filterbank with a frequency

range of 80-8000Hz(Patterson et al., 1987). The envelope of each filterbank out-

put was calculated via the analytic signal obtained with the Hilbert transform,

raised to the power of 0.3. This rectification and compression step was intended

to partially mimic that which is seen in the human auditory system (Plack et al.,

2008). The audio envelope was then calculated by summing the rectified and

compressed filterbank outputs across channels. The audio envelope data was

subsequently downsampled to the same sampling frequency as the EEG (64 Hz)

using an FFT-based resampling method. The EEG and envelopes were then tem-

porally aligned using start-trigger events recorded in the EEG. The envelopes

were subsequently lowpassed at 9 Hz. As part of the cross-validation procedure,

audio envelopes were finally centered and standardized (Z-normalized) across

the time dimension using the mean and standard deviation of the attended

speech envelope in the training data.

5.2.8 Statistical Analysis

All statistical analyses were calculated using MATLAB. Repeated-measures anal-

ysis of variance (ANOVA) tests were used to assess differences between the

regression accuracies (section 5.2.2) and classification performances 5.2.2 ob-

tained with the different forward/backward model estimation methods. Regres-

sion accuracies and classification performances for individual subjects were
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averaged across folds prior to statistical comparison.

Given the non-Gaussian distribution of regression accuracies (range -1 to

1) and classification performance metrics (range 0 to 1), Fisher Z-transforms

and arcsine transforms were applied to these measures, respectively, prior to

statistical tests and correlations.

5.3 Results

The forward/backward stimulus-response model estimation methods intro-

duced in Section 5.2 were used to decode attended speech envelopes from

low-frequency EEG activity. The following sections analyze results with metrics

of 1) regression accuracy, 2) classification accuracy, 3) receiver operating charac-

teristic (ROC), and 4) information transfer rate (ITR). Results are shown for each

of the regularization schemes, for both forward and backward models. For each

regularization scheme, the regularization parameter(s) are tuned to maximize

regression accuracy. These parameter values are then used for all regression

and classification comparisons. Regression accuracy compares different reg-

ularization schemes in predicting/reconstructing test data using the optimal

regularization parameter. Classification accuracy uses the regression accuracy

values to classify the attended/unattended talker and compares the different

regularization schemes in performing this task. The ROC curve visualizes the

relationship between the true and false-positive rates for different classifier

discrimination function thresholds. Lastly, the ITR describes the impact of

decoding segment length on the bit-rate, for different points on the ROC curve.

5.3.1 Regularization Parameter Tuning

The forward/backward model estimation methods, except for the OLS method,

use regularization techniques to prevent overfitting and therefore require a

selection of the appropriate tuning parameters. Figure 5.7 (in section 5.6) shows

the correlation coefficient between estimated (validation set) data and the actual

target data (regression accuracy) over a range of regularization parameters. In

general, there is a broad region where validation regression accuracy is flat,

which peaks before quickly falling off with increasing λ. It is also apparent that

the regression accuracies obtained with backward models generally are higher

than those obtained with forward models.
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Figure 5.8 (in section 5.6) shows regression accuracies for forward/backward

models with Elastic Net penalties. Unlike the other linear models investigated

in the present study the Elastic Net has two hyperparameters. The α parameter

adjusts the balance between L1 and L2 penalties. Similar to the other regular-

ization schemes, for each value of α, there is a broad range of λ values that give

good correlation performance.

5.3.2 Regression Accuracy

For each regression method (and each value ofα for elastic net), the forward/backward

stimulus-response model was estimated and the optimum lambda estimated

on the training/validation set. This optimal model was then applied to the test

set, and the regression accuracy was compared between regression methods.

This is shown in figure 5.2. One might expect that the averaging of prediction-

response correlations across channels for the forward model may have resulted

in lower regression accuracies compared to the backward model. This was

demonstrating using a t-test between the forward and backward models, over

all regularization schemes and subjects (∆= 0.083, T107 = 17.8, p = 1.1×10−33).

However, when using maximum correlation across channels, instead of the

average, for the forward model, there was still a significant difference (∆= 0.045,

T107 = 9.8, p = 9.4×10−17).

For forward models, a repeated measures ANOVA with regularization method

as the factor found no significant effect of regularization method on the aver-

age of correlation coefficients, even when using the average of the correlation

coefficients of the 5 channels with the largest correlation coefficients for each

subject. For the backward models, a similar repeated measures ANOVA, found a

significant effect of regularization method on regression accuracy (F(5,85) = 78.0,

p < 1.0× 10−16). Tikhonov regularization yielded a regression accuracy that

was significantly greater than each of the other schemes, using a Bonferonni

correction to account for the family-wise error rate (p < 0.045). This is contrary

to the expectation that Ridge regression would outperform Tikhonov for the

backward model due to the inter-channel leakage introduced by the Tikhonov

kernel. Moreover, OLS had a regression accuracy that was significantly smaller

than the other schemes (with Bonferonni correction, p < 1.3× 10−10). This

highlights the importance of regularization for the backward models.

For Elastic Net regularization, α values was characterized at 0.25, 0.5, 0.75

and 1 (Lasso) to sample different degrees of sparsity/smoothness. The value
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α=0 (Ridge) was not sampled due to sub-optimal solver performance near

this point. A repeated measures ANOVA analysis with factors of α and subject,

using optimal λ values, showed no significant effect of α for forward models.

This means that adjusting the model sparsity had no significant effect on the

regression accuracy. However, a significant effect of αwas found for backward

models (F(3,51) = 12.4, p = 3.3×10−6). A posthoc paired t-test with a Bonferonni

correction revealed that the best regression accuracy was obtained withα= 0.25

(p = 6.2× 10−4). It was, however, noted that the average difference between

regression accuracies for α= 0.25 and α= 1 was only 8×10−4.

To obtain an estimate of the significance of the regression accuracies pre-

sented in figure 5.2, we randomized the phase of the audio data passed to the

forward models, and the phase of the EEG data passed to the backward mod-

els. The goal was to provide an estimate of the correlation noise floor for the

models. The models were those trained on unaltered data using each of the

regularization schemes. Randomizations were performed 100 times per subject

to yield an estimate of the noise floor regression accuracies. The regression

accuracies were computed the same way as before. A two-sample Kolmogorov-

Smirnov test conducted pairwise showed that, within subjects, the distribution

of noise floor correlations were not significantly different between regulariza-

tion schemes, or channels in the case of the forward model. The within-subject

distributions were thus combined, and a two-sample Kolmogorov-Smirnov test

was performed pairwise between subjects. No significant difference in distribu-

tions was found between subjects. As such, all distributions were combined.

The 95% confidence interval of the noise floor correlations was [-0.001, 0.001]

for the forward model and [-0.032, 0.032] for the backward model.
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Figure 5.2: Test set regression accuracies (ra t t e nd ) for each forward/backward model estimation
method plotted against runa t t e nd . Left: results from the forward modeling approach. Right:
results from the backward modeling approach. For each scheme (represented by a color), each
point represents average data from one subject. The black line shows ra t t e nd = runa t t e nd .

5.3.3 Classification Accuracy

We further sought to investigate how the different forward/backward models

perform in terms of discriminating between attended and unattended speech

on a limited segment of data. The duration of the segment was varied as a

parameter (1, 3, 5, 7, 10, 15, 20 and 30s). This was characterized on held-out

test data for each TRF method, using the λ value that yielded the maximum

regression accuracy in the validation data. The results from this analysis are

shown in figure 5.3. A 2-way repeated measures ANOVA with factors of regu-

larization scheme and model (forward or backward), based on 30s decoding

segment lengths, found a main significant difference between backward and

forward models (F(1,17) = 17.3, p = 6.5×10−4), with a significant interaction with

the effect of regularization scheme (F(5,85) = 208.9, p < 1.0×10−16). A posthoc

paired t-test showed that backward model performs better than the forward

model for all regularization schemes excluding the case where ordinary least

squares (OLS) was applied (T17 = 9.35, p = 4.2× 10−8). For OLS, the forward

model outperformed the backward model (T17 = 7.32, p = 1.2×10−6).

The interaction of the effect of regularization scheme on the classification

accuracy of forward and backward models was investigated. A repeated mea-

sures ANOVA with factors of regularization scheme, applied only to the forward

TRF classification accuracy scores, found no significant effect of regularization

scheme on classification accuracy. This is consistent with the lack of signifi-
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cant differences being detected in regression accuracies for different forward

model regularization schemes, even when limiting the number of channels to 5

with the highest regression accuracies. In this case, the SVM classifier can be

viewed as a data-driven approach to select channels that are most relevant to

attention classification. For the backward models, however, a significant effect

of regularization scheme on classification accuracy was found (F(5,85) = 229.4,

p < 1.0×10−16). A posthoc paired t-test analysis with a Bonferonni correction

revealed that the classification accuracy for the OLS scheme was significantly

worse than each of the others (∆̄ = −29.1, p < 7.9× 10−10). Lasso performed

significantly worse than each of the remaining schemes (∆̄=−1.2, p < 0.040).

In short, regularized backward schemes outperform OLS by a relatively large

margin, as seen in figure 5.3.

For Elastic Net regularization, a repeated measures ANOVA with factors of α

and subject did not find any significant effect of α on classification accuracy for

forward or backward models.

In summary, for the forward model there was no difference between schemes

(regularization and OLS), and for the backward model there was no difference

between Ridge, Tikhonov, Shrinkage and LRA, but all regression methods were

better than OLS.

Relation to regression accuracy

The discrimination between attended and unattended speech streams from EEG

data is done in two stages: the computation of regression accuracies, followed

by classification. We sought to investigate how the classification accuracies

obtained with each model relate to the test set regression accuracies. A plot of

this relationship is shown in figure 5.4.

For forward models, the average correlation between regression accuracy

and classification performance across decoding segments and over all regular-

ization schemes is 0.69 (T108 = 9.83, p = 2.2×10−16). For backward models, the

correlation between the regression accuracy and classification performance is

0.89 (T108 = 22.4, p < 1.0×10−16). This suggests that classification performance

varies with regression accuracy. However, as was previously described for the

backward models, while Tikhonov regularization achieved a significantly higher

regression accuracy compared to all other methods, it did not achieve a signifi-

cantly higher classification performance compared to Shrinkage, Ridge Regres-

sion or LRA. To explain this, we examined the classification feature in terms of
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Figure 5.3: Using different forward/backward models to decode selective auditory attention
from multi-channel EEG data. Classification performance is shown for different decoding seg-
ment lengths (1s, 3s, 7s, 10s, 15s, 20s, 30s). Top-left and -right panels show the classification
performance for forward and backward models respectively. Performance is shown for the OLS
scheme and an average across regularized schemes. Regularized schemes were averaged to
concisely illustrate the higher classification accuracy obtained by these schemes compared to
OLS for the backward model, but not the forward model. Bottom-left and -right panels show
the classification performance for 30 s long decoding segments. The different regularization
schemes are shown in different colors (see legend). Notched boxplots show median, and first
and third quartiles. Whiskers show 1.5× IQR. Dots indicate outliers. The dashed line shows the
above-chance significance threshold at p = 0.05.
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the difference between class means (r̄a t t e nd − r̄una t t e nd ) and the within-class

variance (0.5(σ2
ra t t e nd

+σ2
runa t t e nd

)). Both of these terms affect the separability

between classes.

For backward models, Tikhonov regularization had a significantly larger

difference between class means compared to Ridge Regression and Shrinkage

(Tikhonov>Ridge: T17 = 2.62, p = 0.018), (Tikhonov>Shrinkage: T17 = 2.59,

p = 0.019). At the same time, the between-class variance computed over

101 independent decoding segments of 30s each was also significantly larger

for Tikhonov regularization (Tikhonov>Ridge: F100,100 = 2.37, p = 1.2× 10−5),

(Tikhonov>Shrinkage: F100,100 = 2.37, p = 1.4×10−5). This suggests that while

Tikhonov regularization yields a better regression accuracy (correlation co-

efficient), this is offset by an increased variance in the regression accuracy

computed over short decoding segments, nullifying any potential gains in clas-

sification performance.

5.3.4 Receiver Operating Characteristic

The receiver operating characteristic (ROC) curve, shown in figure 5.5, shows the

relationship between the true-positive rate and false-positive rate for decoding

segment trials where the classifier discrimination function lies above a given

threshold, as the threshold is varied. The classification accuracy score that we

report corresponds to the point on the ROC that lies along the line between

(0,100) and (100,0). This is also the point at which the Wolpaw information

transfer rate (ITR) is estimated, whereas the Nykopp ITR estimation finds a point

that lies further left along the ROC curve. The area under the curve is highly

correlated with classification accuracy (over all regularization schemes and

decoding segment lengths, (r = 0.99, T862 = 219.9, p < 1.0×10−16). The Nykopp

ITR, on the other hand lies further left along the ROC curve, demonstrating that

by avoiding the classification of some trials, it is possible to maximize the ITR.

5.3.5 Information Transfer Rate

The Wolpaw ITR represents the transfer rate when all decoding segments are

classified, whereas the Nykopp ITR represents the maximum achievable transfer

rate when some classifications are withheld based on classification discrimi-

nation function output. Figure 5.6 shows the Wolpaw and Nykopp ITR values

as a function of decoding segment duration, based on models computed with
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Figure 5.5: Average receiver operating characteristic curve, with standard deviation band, for
30s decoding segments using Tikhonov regularization. Points at which Wolpaw and Nykopp
information transfer rates were evaluated for each subject are shown. Color along curve indicates
percentage of decoding segment trials evaluated to obtain each point. The gray band indicates
the standard deviation boundaries of the curve in both x and y directions.

Tikhonov regularization. Both the Wolpaw and Nykopp ITR show an increase

followed by a decrease with increasing decoding segment duration. The plots

suggest that for brain computer interface applications with fixed decoding seg-

ment lengths, it may be advisable to use decoding segments of 3-5 seconds to

maximize the ITR. While the Nykopp measure is an upper-bound, its increase

over the Wolpaw ITR value (forward model, 5s: T17 = 13.1, p = 2.6× 10−10),

(backward model, 5s: T17 = 16.7, p = 5.4×10−12) demonstrates that by adjusting

the classifier decision function cutoff, it could be possible to increase the ITR.

5.4 Discussion

In this study, we systematically investigated the effects of forward/backward

stimulus-response model estimation methods on the ability to decode and

classify attended speech envelopes from single-trial EEG responses to speech

mixtures. The performance of stimulus/EEG decoders based on forward models

(mapping from attended speech envelopes to multi-channel EEG responses)

and backward models (mapping from EEG response back to speech envelopes)

were compared. It was found that the backward models outperformed the

forward models in terms of regression and classification accuracies. While for-
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Figure 5.6: Wolpaw and Nykopp information transfer rates (ITR) as a function of decoding
segment duration for the forward and backward models, using Tikhonov regularization. Notched
boxplots show median, and first and third quartiles. Whiskers show 1.5× IQR. Dots indicate
outliers.

ward models could be expected to have higher regression accuracies due to the

averaging of correlation coefficients across channels for forward models, the

regression accuracy for the backward model was still higher when compared to

the maximum correlation coefficient across channels for the forward model. We

hypothesize that the models do a better job of reconstructing audio (the back-

ward model) than predicting EEG data (the forward model) because the EEG

data contains a lot of information from other brain functions. It is impossible to

predict these signals from the stimulus, hence the limited success of a forward

model, but it is possible to filter them out, hence the better performance of a

backward model. There are also other fundamental differences between the

models, such as statistical and structural properties of the regressor variable,

and number of parameters estimated. For instance, the eigenspectrum of the

EEG autocovariance matrix in figure 5.9 (in section 5.6) suggests that the matrix

is ill-conditioned, particularly compared to that of the speech envelope. Differ-

ent regularization schemes were not found to significantly affect the forward

model classification accuracies. However, for the backward models, the decod-

ing schemes that yielded the best classification accuracy were Ridge Regression,

LRA, Shrinkage and Tikhonov. Lasso had a lower classification accuracy by a

small but significant margin. Classification accuracy increased monotonically

as a function of duration, reflecting the greater amount of discriminative infor-

mation available in longer segments. ITR however peaked at an intermediate
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segment duration, reflecting the tradeoff between the accuracy of individual

classification judgments (greater at long durations) and number of judgments

(greater at short durations). The optimum was around 3-5s.

For the analysis, we used different linear approaches to decode selective

auditory attention from stimulus and EEG data. These analyses all relied on the

explicit assumption that the human cortical activity selectively tracks attended

and unattended speech envelopes. To fit the models, we made a number of

choices based on common practices in literature, and with the goal of being able

to compare forward/backward models and regularization schemes. For exam-

ple, a 500 ms kernel was used as was done by others (Fuglsang et al., 2017). While

shorter kernels have been explored as well (O’Sullivan et al., 2014), a longer one

tests the ability of the model estimation method to handle a larger dimension-

ality and allows for a more flexible stimulus-response modeling capturing both

early and late attentional modulations of the neural response. Additionally, we

chose to focus on 1-9 Hz EEG activity as the attentional modulation of EEG data

has been found prominent in this range. It is likely that other neural frequency

bands robustly track attended speech (e.g. high gamma power (Pasley et al.,

2012)) and that the neural decoders potentially could benefit from having access

to other neural frequency bands. This is, however, outside the scope of this

paper.

5.4.1 Decoding selective auditory attention with forward and back-

ward models

The forward models performed significantly worse than the backward models in

terms of classification accuracies. Single-trial scalp EEG signals are inherently

noisy, in part because activity picked up by each electrode reflects a super-

position of activity from signals that are not related to the selective speech

processing (Blankertz et al., 2011). We refer here to any aspects of the EEG sig-

nals that systematically synchronize with the attended speech streams as target

signals and anything that does not as noise. To improve the signal-to noise

ratio one can efficiently use spatio-temporal filtering techniques. This in part

relates to the fact that stimulus-irrelevant neural activity tends to be spatially

correlated across electrodes. The spatio-temporal backward models implicitly

exploit these redundancies to effectively filter out noise and improve signal-to-

noise-ratio. This makes them fairly robust to spatially correlated artifact activity
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(e.g. electro-ocular and muscle artifacts) when trained on data from a large

number of electrodes. This is also reflected in the high classification accuracies

that were obtained with the backward models. However, for the relatively high

number of electrodes used in this study, it was found that the spatio-temporal

reconstruction filters were effective only when properly regularized.

The forward models, on the other hand, attempt to predict the neural re-

sponses of each electrode in a mass-univariate approach. These models do

not, therefore, explicitly use cross-channel information to regress out stimulus-

irrelevant activity. The relative contribution of the individual channels to the

classification accuracies were instead found via an SVM trained on correlation

coefficients computed per channel, over short time segments. In short, back-

ward models remove spatial information prior to classification when regressing

out non-stimulus-related activity, whereas forward models preserve this infor-

mation, but do not regress out non-stimulus-related activity. It can therefore be

beneficial to apply dimensionality reduction techniques (e.g. independent com-

ponent analysis (Bell and Sejnowski, 1995) or joint decorrelation (de Cheveigné

and Parra, 2014)) to represent the EEG data as a linear combination of fewer

latent components prior to fitting the forward models. Alternatively, canonical

component analysis can be used to jointly derive spatio-temporal filters for both

audio and EEG such that the correlation between the filtered data is maximized

(de Cheveigné et al., 2018a).

Regularization

Each regularization scheme makes certain assumptions and simplifications

that are therefore adopted by studies employing them. Because these methods

have not been previously evaluated side by side, it is unknown how valid these

assumptions are.

While no regularization (OLS) was found to work well for forward models

in producing classification accuracies roughly in line with regularized models,

this method performs relatively poorly when applied to backward models. This

is likely reflective of the higher dimensional kernel required for the backward

problem. For comparison, a forward model had 33 parameters (per channel)

that needed to be fit, whereas a backward model had 2,178 parameters.

We generally found that the reconstruction accuracies (ra t t e nd ) plateaued

over a large range of λ values for linear models (Figure 5.7).

Elastic net regularization permits the adjustment of the balance between L1
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and L2 regularization via theαparameter. For the backward model, it was shown

that a smaller α value improved the correlation between the reconstructed and

attended audio stream by only a narrow margin.

The α value had no significant impact on classification accuracy for either

forward or backward models. As such, the higher classification performance

of Ridge Regression (α = 0), compared to Lasso (α = 1) may be a result of

differences between the closed form solution used for Ridge Regression and

the coordinate descent solution used for the Elastic Net, as well as between the

solvers themselves (MATLAB’s mldivide versus GLMNET (Qian et al., 2013)).

Another coordinate descent method, known as boosting, has been used in

several studies (Calabrese et al., 2011; David et al., 2007; Thorson et al., 2015).

It has been shown that boosting promotes sparse solutions in the context of

spectro-temporal receptive fields with single-unit recordings (David et al., 2007).

This method was not explored in the present study because boosting tends to

be computationally intractable for backward models due to the high number of

parameters, and because it involves a large set of hyperparameters. This makes

a direct comparison of the regularization methods difficult. Instead we used the

Elastic Net algorithm to investigate how the stimulus-response models could

benefit from sparsity.

For the forward model, all regularization schemes yielded regression and

classification accuracies that were not significantly different from each other.

For the backward model, Tikhonov regularization yielded the best regression

accuracy, despite the fact that cross-channel leakage may have lead to a subop-

timal solution. However, it was found that the improved regression accuracy

did not lead to a better classification accuracy compared to other regression

schemes with closed-form solutions (i.e. Ridge, Shrinkage and LRA) due to

an associated increased variance in the correlation coefficient computed over

short decoding segment lengths. It has been reported that, in practice, the Ridge

Regression approach appears to perform better than LRA (Vajargah, 2013); how-

ever, no significant difference was found in the present study. LRA removes

lower variance components after the eigendecomposition of XT X, essentially

performing a hard-threshold. In contrast, Ridge Regression is a smooth down-

weighting of lower-variance components Blankertz et al., 2011.
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5.4.2 Realtime Performance

The information transfer rate results provide insight into how classification per-

formance can be optimized. It is worth noting that the ITR measures represent

particular points along the ROC curve, as is illustrated in Figure 5.5. For a binary

classification problem, with balanced classes, the Wolpaw ITR corresponds to

the point on the ROC curve along the line connecting the corners of the plot

at coordinates (100,0) and (0,100). The Nykopp ITR, on the other hand corre-

sponds to the point that maximizes the ITR, essentially trading the number

of classified samples for increased classification accuracy. In practice, other

considerations besides ITR can influence the choice of the point on the ROC. For

instance, if there is a high penalty on incorrect classifications, then the classifier

threshold may be adjusted to operate at another point on the ROC curve. In

short, the ROC and ITR are useful tools in identifying a suitable balance between

sensitivity and specificity.

The ITR results in the present study suggest a 3-5 s decoding segment length

to achieve the maximum bit-rate. It should be noted that this assumes that

switches in attention can occur frequently, on the order of the decoding seg-

ment length, such as in a real-world cognitive control setting where system

response latency is an important constraint. In cases, where switches in at-

tention are known to be sparse a priori, it may instead be more desirable to

increase decoding segment length and sacrifice bit-rate to put more emphasis

on accuracy, since the loss in bit rate due to long decoding segments is only

evident during attention switches. Such an approach was taken by O’Sullivan

and colleagues (O’Sullivan et al., 2017b), where the theoretical performance of

a realtime backward model decoding system was characterized for switches in

attention every 60 s. In that study, a decoding segment length between 15-20 s

was reported as optimal to achieve the best speed-accuracy tradeoff.

5.4.3 Summary

There are many methods that can be used to compute forward/backward

stimulus-response models. The present study uses a baseline dataset and pro-

cedures for the evaluation of these methods. In consideration of the multiple

applications in which forward/backward models are used, primarily dealing

with reconstruction accuracies or classification performance, this paper con-

sidered multiple metrics of performance. By characterizing the regularization
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and performance of the model estimation methods, and the relationship be-

tween performance metrics, a more complete understanding of the validity of

the assumptions underlying each method is provided, as well as the impact of

the assumptions on the end result. While these experiments were done with

EEG data, we expect that the results apply equally to magnetoencephalography

(MEG) data. The key findings from this study were 1) the importance of regu-

larization for the backward model, 2) the superior performance of Tikhonov

regularization in achieving higher regression accuracy although this does not

necessarily entail superior classification performance, and 3) optimal ITR can

be achieved in the 3-5 s range and by adjusting the classifier discrimination

function threshold.
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DW, SF, JH, EC, MS, and AdC contributed to the code used in the paper. DW,

SF, JH, and AdC determined the data analysis procedure. DW created some of

the figures, performed statistical analyses, wrote parts of the paper, and was

responsible for the overall paper. SF created some of the figures, and wrote

parts of the paper. JH, MS, and AdC provided critical feedback on the paper



98 5. Auditory attention decoding method comparison

5.6 Supplementary Material

The effect of regularization parameters on regression accuracy are shown in

figures 5.7 and 5.3. The eigenspectra of the audio and EEG autocovariance

matrices are shown in figure 5.9.
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Figure 5.7: Group-mean validation-set regression accuracies obtained with different for-
ward/backward model estimation methods as the regularization parameters λ are varied. The
left-hand and right-hand panel present results obtained with forward and backward models,
respectively. The x axis shows the strength of the λ regularization parameters. The y axis shows
the regression accuracies in terms of Pearson’s correlation coefficients between predicted data
and target data. The dashed line shows the regression accuracy for OLS.

10 -5 10 0

�

0.029

0.03

r a
tt
e
n
d
e
d

Forward: Regularization path

Model

alpha = 0.25

alpha = 0.5

alpha = 0.75

Lasso

10 -5 10 0

�

0.09

0.1

0.11

0.12

0.13

0.14

0.15

✁ ✂
✄✄
☎
✆
✝☎
✝

Backward: Regularization path

Model

alpha = 0.25

alpha = 0.5

alpha = 0.75

Lasso

Figure 5.8: Group-mean validation-set regression accuracies obtained from forward/backward
models with elastic net penalties. The elastic net has two tuning parameters, λ and α. The two
panels show the group-mean validation set regression accuracies cross-validated over a relatively
small grid of λ and α values. The prediction accuracies remain stable over a large range of λ
values. The dashed line shows the regression accuracy for OLS.



5.6 Supplementary Material 99

Eigenvalue #

0 10 20 30

N
o

rm
a

liz
e

d
 E

ig
e

n
v
a

lu
e

0

0.2

0.4

0.6

0.8

1
Speech Autocovariance Matrix

Eigenvalue #

0 500 1000 1500 2000 2500

N
o

rm
a

liz
e

d
 E

ig
e

n
v
a

lu
e

0

0.2

0.4

0.6

0.8

1
EEG Autocovariance Matrix

Figure 5.9: Normalized eigenspectra for speech and EEG autocovariance matrices
�

XT X
�

. Bold
black line is the average across subjects. Individual subjects are shown as thin dashed lines.



100 5. Auditory attention decoding method comparison



6
EEG correlates of working memory load

during auditory processinga

Abstract

Neuronal oscillations are thought to play an important role in work-

ing memory (WM) and speech processing. Listening to speech in

real-life situations is often cognitively demanding but it is unknown

whether WM load influences how auditory cortical activity synchro-

nizes to speech features. Here we developed an auditory n-back

paradigm to investigate cortical entrainment to speech envelope

fluctuations under different degrees of WM load. We measured the

electroencephalogram (EEG), pupil dilations and behavioural per-

formance from 22 subjects listening to continuous speech with an

embedded n-back task. The speech stimuli consisted of long spo-

ken number sequences created to match natural speech in terms

of sentence intonation, syllabic rate, and phonetic content. To bur-

den different WM functions during speech processing, listeners

performed an n-back task on the speech sequences in different

levels of background noise. Increasing WM load at higher n-back

levels was associated with a decrease in posterior alpha power as

well as increased pupil dilations. Frontal theta power increased at

the start of the trial and increased additionally with higher n-back

level. The observed alpha-theta power changes are consistent with

visual n-back paradigms, suggesting general oscillatory correlates

of WM processing load. Speech entrainment was measured as a

linear mapping between the envelope of the speech signal and low-

frequency cortical activity (<13 Hz). We found that increases in both

a This chapter is based on: Hjortkjær, J. H.; Marcher-Rørsted, J.; Fuglsang, S.A. & Dau, T (2017).

”Cortical oscillations and entrainment in speech processing during working memory load”.

European Journal of Neuroscience
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types of WM load (background noise and n-back level) decreased

cortical speech envelope entrainment. Although entrainment per-

sisted under high load, our results suggest a top-down influence of

WM processing on cortical speech entrainment.

6.1 Introduction

Cortical oscillations have been hypothesized to play a functional role in speech

processing (Ghitza, 2011; Giraud and Poeppel, 2012). Oscillatory activity, partic-

ularly in the delta (1-3 Hz) and theta (4-7 Hz) frequency bands, has been found

to entrain to the slow temporal modulations inherent in natural speech signals

(Ahissar et al., 2001; Di Liberto et al., 2015; Luo and Poeppel, 2007). Selective

attention is known to modulate this response by enhancing the entrainment

between low-frequency cortical activity and the speech stream that the listener

is attending to, relative to the ignored stream (Ding and Simon, 2012a; Golumbic

et al., 2013; O’Sullivan et al., 2014). However, listening to speech in everyday

life also involves working memory (WM) to maintain and relate speech content

over time or to inhibit irrelevant information. Across modalities, WM tasks

have been associated with different oscillatory networks in cortex (Roux and

Uhlhaas, 2014), but potential relations to speech processing are unclear. Os-

cillatory power in higher-order cortical areas are thought to influence speech

entrained activity in auditory cortex (Keitel et al., 2017; Park et al., 2015), but it is

unclear whether such functional couplings might reflect an interaction between

WM processes and auditory processing of the speech stimulus.

The nature of a potential relationship between WM tasks and speech en-

trainment is not clear. Several scenarios are possible. First, although speech

entrainment is known to be shaped by selective attention (Ding and Simon,

2012a; Mesgarani and Chang, 2012; O’Sullivan et al., 2014), theta and alpha

signatures of WM demands could reflect general WM processes that do not

interact with auditory processing. In this case, attending to a speech stimulus

is sufficient to establish an entrained response and additional task demands

leave the entrainment response unaffected. Alternatively, higher degrees of

WM load may distribute neural resources away from sensory processing of the

speech stimulus and towards processing related to the cognitive task. Cortical

responses evoked by visual stimuli during WM tasks have consistently been

found to be attenuated with increasing cognitive demands (Gevins et al., 1996;
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Pratt et al., 2011; Scharinger et al., 2015, 2017; Watter et al., 2001). If this gener-

alizes to speech entrainment, then higher WM load might be associated with

a decrease in entrainment. Finally, it is also conceivable that increased task-

engagement associated with higher WM load may recruit additional neural

resources for the processing of the task-relevant stimulus. In this case, WM load

would instead increase the cortical entrainment to the speech signal.

Numerous human EEG/MEG studies have related WM demands to changes

in oscillatory power, particularly in the theta and alpha frequency ranges (Klimesch,

1999). Despite the consistent involvement of theta and alpha oscillations, the

functional characterization of these oscillations in terms of specific WM func-

tions are still debated. The n-back task is often used to probe WM function

(Owen et al., 2005). In an n-back task, subjects are asked to detect whether the

presented stimulus in a sequential stream of items matches the one presented

n positions back. In visual n-back tasks, increasing WM processing load (higher

n) is associated with a frontocentral increase in theta power and a decrease in

alpha band power at posterior recording sites (Gevins and Smith, 2000; Gevins

et al., 1997; Haegens et al., 2014; Pesonen et al., 2007; Scharinger et al., 2015,

2017). In tasks involving memorization of a number of items (e.g. the Sternberg

task), on the other hand, both alpha and theta band power have been found

to increase with the number of elements held in memory (Jensen and Tesche,

2002; Jensen et al., 2002; Krause et al., 1996; Leiberg et al., 2006; Obleser et al.,

2012; Raghavachari et al., 2001).

Different WM sub-processes are thus associated with different and some-

times opposing alpha-theta changes. In a minimal definition, working memory

involves a temporary memory storage (sensory buffers) and attention-related

control functions for maintenance and manipulation of WM content (’central

executive’) (Baddeley, 2003). Executive functions have been further divided into

memory updating functions that actively maintain and replace information and

WM inhibition that suppress information that is not relevant to the current task

(Miyake et al., 2000). The n-back task has been suggested to specifically target

WM updating load (Miyake et al., 2000; Scharinger et al., 2015). In visual tasks,

inhibitory demands on WM are often manipulated with incongruent items,

e.g. in a flanker task. Whereas updating load has been related to decreases in

alpha power, inhibitory WM load have been associated with increasing alpha

power (Händel et al., 2011; Snyder and Foxe, 2010), consistent with the notion of

alpha oscillations as a suppression mechanism (Foxe and Snyder, 2011; Jensen
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and Mazaheri, 2010). In auditory tasks, acoustic degradations or noise are a

common source of interference and have been shown to increase behavioural

WM load (Pichora-Fuller et al., 1995). For spoken or memorised words, acoustic

degradations have been associated with increasing alpha power at posterior

channels (Obleser et al., 2012; Wöstmann et al., 2017) consistent with an in-

crease in inhibitory WM load. In natural speech processing, however, executive

functions related to maintenance of relevant information and inhibition of irrel-

evant information are typically engaged at the same time. Yet, it is unclear how

these WM processes may interact in speech perception. Multiple studies have

reported that WM load influences the ability to ignore distracting information,

but the nature of this relation appears to be highly dependent on the stimulus

type and the type of cognitive task involved (Lavie et al., 2004; SanMiguel et al.,

2008; Scharinger et al., 2015; Sörqvist et al., 2012; Vandierendonck, 2014).

Recent studies indicate that speech-entrained activity in the auditory cortex

is functionally dependent on oscillatory power in multiple fronto-parietal net-

works (Keitel et al., 2017; Park et al., 2015). Keitel et al., 2017 recently reported

that entrained auditory cortical activity, quantified as the mutual information

between the phase of low-frequency activity in auditory cortex and the phase of

slow speech envelope modulations, interacted with oscillatory power in distinct

cortical networks. In particular, delta entrainment in the auditory cortex was de-

pendent on central alpha and frontal beta power and modulated parietal theta

power. This could indicate a top-down influence on speech-entrained activity in

auditory cortex by oscillations in a larger cortical network involved in cognitive

control or attention. Such a top-down influence could reflect language-specific

functions such as semantic memory (Keitel et al., 2017), but could also be related

to more general WM functions. To test more directly whether WM processing

influence cortical speech entrainment, however, it needs to be demonstrated

that imposing a WM processing load in behavioural tasks influences concurrent

speech entrainment.

Here, we developed an experimental paradigm to investigate influences

of WM load on cortical speech envelope entrainment. We designed a ’num-

ber speech’ material consisting of sequences of spoken numbers that match

important properties of natural continuous speech. During speech listening,

participants performed either a 1-back or 2-back task with the speech sequences

embedded in either a high or a low level of background noise. This allowed

us to examine the individual and combined effects of WM updating (n-back
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level) and inhibition (noise level) load during continuous speech processing.

We recorded the EEG as well as changes in pupil sizes which are often used as a

physiological marker of WM demands (Scharinger et al., 2015; Van Gerven et al.,

2004; Wendt et al., 2016; Zekveld et al., 2010). To examine potential differences

in speech entrainment during the different load conditions, we used regression

techniques to analyse the relationship between ongoing low-frequency cortical

activity and envelope fluctuations in the corresponding speech signal (Ding

and Simon, 2012a; Lalor et al., 2009b). Using continuous speech, our paradigm

also allowed us to study the dynamics of prolonged WM load and load-related

measures over longer time segments.

6.2 Materials and Methods

6.2.1 Participants

22 healthy volunteers (six females, ages 19-28, mean age: 24, SD: 3 years) par-

ticipated with informed consent. Eye-tracking data was recorded in 15 of the

participants. All participants reported normal hearing. The experiment was

approved by the Science Ethics Committee for the Capital Region of Denmark

(protocol no. H-16036391) and conducted in accordance with the Declaration

of Helsinki.

6.2.2 Speech stimuli

We created a speech material that could be used to control the WM load imposed

on the listener and monitor their task performance during listening. The speech

material consisted of spoken number sequences created to match natural con-

tinuous speech in terms of syllabic rate, intonation, and sentence rhythm. First,

two- or three-digit numbers were read by a male Danish speaker and recorded

in an anechoic chamber. For each number, several tokens spoken in rising or

falling intonation patterns were recorded. The recorded number tokens were

afterwards concatenated into sequences of ‘number sentences’ consisting of

three or four numbers (see Fig. 1). The time interval between numbers was

set at random durations ranging between 150-230 ms and the time interval

between number sentences was set randomly between 300-700 ms to match the

word and sentence rhythm of natural speech. The number sentences were then

used to synthesize long sequences of spoken numbers for the experimental
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trials. We created 20 trial lists each of 30 spoken numbers (resulting in durations

between 45 s and 55 s). Each trial list contained n=1,2,3 back repetition targets,

i.e. numbers which were identical to the number presented n numbers previ-

ously. We ensured that the n-back targets were equally distributed between the

first and second half of the list.

To generate speech-shaped stationary background noise with the same

spectral characteristics as the original speech stimuli, we computed the average

of a large number of speech waveforms until the signal had no distinct slow

envelope modulations. In the experiment, we wanted to impose the noise at a

signal-to-noise ratio (SNR) that resulted in maximal interference without dis-

rupting speech intelligibility. For this reason, we measured speech reception

thresholds for the number tokens in a separate psychoacoustic test with four

normal hearing listeners not participating in the main experiment. The lowest

SNR point on the psychometric function that resulted in 100 % correct identifi-

cation was estimated to 0 dB SNR. In the main experiment, this noise level was

defined as the ‘high-noise condition’. A noise level 10 dB lower (i.e., 10 dB SNR)

was defined as the ‘low noise-condition’. Different speech-shaped noise tokens

were used in every trial, i.e. the noise was not frozen.

For the analysis of speech entrainment, the temporal amplitude envelopes

of the continuous speech signals were extracted using an auditory model of

envelope processing in the peripheral auditory system. The audio waveforms

were first passed through a gammatone filterbank mimicking the spectral fil-

tering characteristics of the basilar membrane (Patterson et al., 1987). At the

output of each filter, the envelope was extracted via the Hilbert transform and

raised to the power 0.3 to account for the compressive response of the inner ear

(Plack et al., 2008). The spectrally decomposed envelopes were then resampled

to match the EEG sampling rate and averaged across frequency channels.

6.2.3 Experimental design

To control WM load during speech listening, participants listened to the con-

tinuous speech stimuli while performing an n-back task in different levels of

background noise. The conditions formed a 2×2 factorial design consisting of

two n-back task levels (1-back, 2-back) and two noise levels (low noise: 10 dB

SNR, high noise: 0 dB SNR). In the 1-back condition, participants were asked to

detect whenever a number was repeated, and in the 2-back task, they detected

whether the presently spoken number was the same as one spoken two times
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back (Fig. 1). Note that repeated numbers were not acoustically identical but dif-

ferent speech tokens of the same number within the continuous speech stream.

The same speech lists were used in the different n-back conditions such that

subjects heard the same speech stimuli in the two different behavioural contexts.

Since the occurrences of 1-2-3 back repetitions were equally distributed, the

same occurrences acted as either targets or lures (repetitions to be ignored)

depending on the n-back task.

Fig. 1 presents a schematic illustration of the trial timeline. Each trial began

with a 7.2 s silent resting baseline where subjects fixated on a cross positioned

in the middle of a black background screen. 2 s after the onset of the resting

baseline, a green screen was shown for 200 ms in order to measure the pupil

light reflex, followed by another 5 s of a black screen baseline. Following the

black screen baseline, a grey screen was presented for 500 ms before the onset of

the sound stimulation. During sound stimulation, the participants maintained

eye fixation on a cross on the grey background screen. The sound stimulation

started with 1.5 s of the background noise at 0 dB or 10 dB SNR before the onset

of the speech stimulus. During the followingö45-55 s presentation of the speech

stimulus, the participants were asked to press a button when an n-back target

was detected. The participants were not instructed to use of any particular

finger for responding. They were not informed about the noise level prior to the

sound presentation. Responses were considered correct when they occurred

between the onset of the target number and the onset of the following number

plus an additional 200 ms. Responses that did not fall in this time-interval

were considered false alarms. After the speech task, the pre-trial baseline and

screen flash were repeated. Subjects performed 8 initial training trials during

which they received feedback whenever n-back targets occurred in the speech

stimulus. During the main experiment, feedback was only provided between

trials by showing the average percent correctly identified n-back targets. Each

participant performed 10 trials for each of the four experimental conditions.

Lists contained either 4 (15 out of 20 lists) or 3 (5 out of 20 lists) n-back targets.

6.2.4 Data acquisition

The experiment was performed in an electrically shielded double-walled sound

booth (IAC Acoustics, North Aurora, IL, USA). The subjects were seated 60 cm

in front of a presentation screen with dim background lighting that was kept

constant for all participants. The auditory stimuli were presented via ER-2 insert
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Figure 6.1: Schematic illustration of the trial structure and task. EEG and pupillometry were
recorded while subjects listened to continuous speech stimuli consisting of spoken number
sequences. Red lines on the waveform represent the pitch contour of the continuous speech
signal. In different trials, listeners identified either 1-back or 2-back number targets in different
levels of background noise. Please see the Methods section for details.

earphones (Etymotic Research, Elk Grove Village, IL, USA). The speech stimuli

were presented at a fixed level of 65 dB SPL. The level of the speech stimuli was

kept constant and the level of background noise relative to the speech signal

varied across noise conditions.

EEG was recorded continuously at 64 scalp electrodes according to the inter-

national 10/20 system using a BioSemi ActiveTwo system (BioSemi, Amsterdam,

Netherlands). The sampling rate was 512 Hz. Additional electrodes were placed

on the left and right mastoids. Eye movements were detected using six bipolar

electrooculographic channels positioned vertically and horizontally around the

eyes.

For 15 subjects, pupil sizes were recorded using an Eyelink 1000 desktop

system (SR Research Ltd., Ottawa, ON, Canada) with a sampling frequency of 250

Hz. Measurements were conducted on one eye, which varied between subjects.

The eye tracking system was calibrated at the beginning of the experiment using

a custom calibration routine.
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6.3 Data preprocessing and analysis

6.3.1 Behavioral data

A measure of d-prime (d’) was used to estimate subjects’ sensitivity in the n-

back task. This was defined as the difference between the inverse cumulative

distribution function (CDF) of correct n-back target detections (hits) and the in-

verse CDF responses made in the absence of a target (false alarms). To examine

performance in the time course of the trial, we also computed the percentage

correctly identified n-back targets at their temporal positions in the trial.

6.3.2 EEG data pre-processing

The EEG data were analyzed using MATLAB and the FieldTrip toolbox (Oosten-

veld et al., 2011). The data were epoched from 5 s before the onset of the speech

stimulus to 45 s after the speech onset. The data were high-pass filtered at 0.5

Hz, re-referenced to the average of the two mastoid electrodes, and resampled

to 128 Hz. For one subject, the data were re-referenced to the average of all 64

scalp electrodes due to noisy mastoid electrodes. Bad (i.e. noisy) channels were

identified visually and removed from the data. On average, 2.4+/−1.9 channels

were rejected. The bad channels were interpolated using a nearest neighbour

method average.

The logistic infomax independent component analysis (ICA) algorithm (Bell

and Sejnowski, 1995; Delorme and Makeig, 2004; Winkler et al., 2015) was used

to decompose the re-referenced EEG data from each subject high-pass filtered

at 1 Hz. The components were visually inspected and artefactual components

were rejected. On average, 4.2+/-1.7 components (range 2-7) were rejected,

corresponding to 6.9+/-2.6 % of components. Of the rejected components,

2.4+/-1.3 components were considered electroocular (EOG) artefacts as they

were highly correlated with the EOG electrodes, with strong weights at frontal

scalp regions. The remaining 1.8+/-1.4 components were identified as either

muscle or cardiac-related artefacts that appeared consistently across trials. The

ICA-derived mixing matrices were thereafter used to spatially filter out artefac-

tual activity from the original EEG data high-pass filtered at 0.5 Hz (Winkler

et al., 2015). Trials were inspected visually for artefacts after ICA cleaning, and

remaining bad trials were removed. Additionally, trials in which the subjects

detected less than 25 % of the target were rejected from further analysis. On
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average, 7.6 +/- 4.2 trials were rejected per subject. Three subjects with more

than 50 % of the data rejected in any given condition were removed from further

analysis. For the remaining 19 subjects, there were no statistical differences in

the number of trials removed between conditions (n-back and noise interaction:

F1,18 = 0.9404, p = 0.345, n-back: F1,18 = 0.0705, p = 0.7937, noise: F1,18 = 1.8331,

p = 0.192). On average, 8.1 +/-1.4 trials remained in each condition for the

remaining subjects.

We examined relative changes in theta and alpha band power between the

experimental conditions. Theta activity was defined in the frequency range

from 4 to 7 Hz, and alpha from 8 to 13 Hz. Filtering was performed using high

order finite impulse response filters. To compute band power, we calculated

the sum of the squared absolute values of the filtered EEG signal for each of

the frequency ranges in time windows of 5 s with 90 % overlap. To account for

individual differences, the power measures were normalized globally by dividing

by the power measures in each trial by the global average in band power across

all trials. To further explore oscillatory power changes over a larger frequency

range, we examined time-frequency representations (TFRs) of power changes

by computing the spectral power as above but in 2-Hz wide frequency analysis

windows from 1 to 30 Hz, in steps of 0.5 Hz. The TFRs were normalized per

frequency bin to the grand average power across all trials and all frequency bins.

To study whether cortical EEG speech entrainment is modulated by working-

memory related processes, we derived temporal response functions (TRFs)

(Ding and Simon, 2012a; Lalor et al., 2009b) that map linearly from the envelope

of the continuous speech signal S (t ) to the EEG responses R (t , n ):

R̂ (t , n ) =
L
∑

l=1

h (τl , n )S (t −τl )

where n = 1...N denotes the number of electrodes and τ = {τ1,τ2, ...τL}
are the time lags between the stimulus and response. The TRFs, h (τ), were

fitted separately on the data from each subject in each of the four experimen-

tal conditions. The TRFs were estimated using regularized regression with a

quadratic penalty term (Lalor and Foxe, 2010). The regularization parameter

of the were set to a fixed high value that gave the highest group-mean leave-

one-out prediction accuracy across all subjects (l a m b d a = 212). The temporal

response functions covered time lags ranging between 0 ms to 400 ms post-

stimulus in steps of 7.8 ms (sampling frequency of 128 Hz). The EEG data and
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speech envelopes were standardized to have zero mean and unit variance. The

TRF models were computed using Matlab code publicly available at www.ine-

web.org/software/decoding.

For the TRF analyses, the EEG data were filtered between 1 and 13 Hz using

high order finite impulse response filters. To quantify changes by either n-back

or noise on the TRF, the peak amplitude, as well as the latency of the peak was

examined. This was done by extracting the maximum value of the TRF from

100 ms to 300 ms for each subject. The latency was defined as the time at which

the peak value of the TRF occurred. A leave-one-trial-out cross-validation pro-

cedure was used to estimate model prediction accuracies in each experimental

condition. The prediction accuracies were quantified as Pearson’s correlation

coefficient between the predicted EEG responses and the actual recorded EEG

data on the held-out trials. This correlation served as indicator of the degree

of speech entrainment, i.e. how tightly the cortical activity was synchronized

to the speech envelope. We also examined band-specific entrainment by filter-

ing the EEG data in delta (1-3 Hz), theta (4-7 Hz) and alpha (8-13 Hz) ranges.

In the statistical analysis of condition-specific differences, we focused on 12

fronto-temporal electrodes (FC5, FC3, FC1, FC2, FC4, FC6, F5, F3, F1, F2, F4,

F6) previously found to be speech-relevant (Di Liberto et al., 2015). To estimate

chance level prediction, we used a permutation procedure where we predicted

EEG responses based on envelopes of non-matching speech sequences. The

97.5 % percentile of the chance distribution was defined as the noise floor.

6.3.3 Pupil data

Eye blinks were classified as samples in the time series where the absolute

value of the pupil diameter exceeded 3 standard deviations of the mean pupil

diameter. Blink-corrupted segments were linearly interpolated from 350 ms

before to 700 ms after the blink (Wendt et al. 2016). Trials containing more that

20 % of corrupted data were rejected from further analysis. Furthermore, three

subjects with more than 50 % of rejected trials were excluded from the analysis.

The subjects excluded due to noisy EEG data were not the same as the subjects

excluded due to noisy pupilometry data. For the remaining subjects, 2+/-3

trials were rejected. The blink-removed data were smoothed using a 25-point

(100 ms) moving average filter. To account for individual differences between

subjects, the data were normalized to the pupil diameter averaged over the 200

ms time window directly preceding the noise onset.
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6.3.4 Statistical analysis

We used repeated measures analyses of variance (ANOVA) to assess statistical

group-level differences between the 2×2 conditions (n-back, noise) on all load-

related measures: behavioural performance, average pupil size and maximum

pupil dilations, EEG band power, TRF peak amplitudes, TRF peak latencies,

and prediction accuracies. All statistical calculations were performed using

Matlab. Shapiro-Wilk tests (alpha = 0.05) were used to test for the normality

assumptions of the parametric tests. For the analysis of the band-specific oscil-

latory EEG power, we assessed group-level differences for the time-averaged

theta band power over a frontal electrode (AFz) and alpha band power over

a posterior electrode (Oz). This restriction was motivated by previous results

showing effects of WM load in the theta band at frontal-midline electrodes, as

well as effects in the alpha band at posterior electrodes (Gevins and Smith, 2000;

Gevins et al., 1997; Scharinger et al., 2015). To further explore differences in

the trial-averaged power over all electrodes sites, we performed cluster-based

permutation tests (as implemented in the Fieldtrip toolbox, (Oostenveld et

al., 2011). We computed the group-level effects of n-back and noise level on

theta and alpha band power with a cluster-defining threshold (cluster alpha) of

p<0.01, a cluster-level threshold of p<0.01, and an electrode neighbourhood

extent of 40 mm.

6.4 Results

6.4.1 Behavioural performance

Response accuracy in the n-back task (measured in d’) was significantly lower in

the 2-back condition compared to the 1-back task (F(1,21)= 203.77, p<0.001) but

was not affected by the level of the background noise (F(1,21)=0.7487, p=0.397)

(Fig. 2B). This result was expected since the higher noise level was predeter-

mined to yield the speech fully intelligible. The n-back targets (and lures) were

uniformly distributed over the trial duration. This allowed us to inspect poten-

tial differences in response accuracy in different parts of the trials. As shown in

Fig. 2A, the identification of 1-back targets remained high throughout the trial,

whereas the identification of 2-back targets declined as the trial progressed.
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Figure 6.2: Behavioural performance (above) and pupil responses (below). A. Percentage of
correctly detected 1-back and 2-back targets during the speech trial. Larger circles represent the
average % correct at the average position of the targets. B. Behavioural sensitivity (d-prime) for n-
back target detection measured over the trial duration. C. The average trace of the pupil dilations
relative to a pre-stimulus baseline. D. Mean and peak pupil dilation over the trial duration. Error
bars represent +/- 1 s.e.m. ***p<0.001
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6.4.2 Influence of WM load on pupil dilations

All WM task conditions evoked a pupil dilation response with a peak 5-10 s after

trial onset, followed by a gradual decrease for the remaining duration of the trial

(Fig. 2C). The pupil dilations increased with the n-back task level but did not

increase additionally with the level of the background noise. Both the mean

and peak pupil dilation were significantly higher for the 2-back task compared

to the 1-back task (mean dilation: F(1,11)= 17.00, p=0.0017; peak dilation:

F(1,11)=20.16, p<0.001). No significant effects of noise level were found on the

pupil measures (mean dilation: F(1,11)=0.31, p=0.58; peak dilation: F(1,11)=

0.76, p=0.40).

6.4.3 Influence of WM load on alpha and theta power

We first investigated changes in posterior alpha power and frontal theta power

previously associated with WM load. As illustrated in Figure 3, increasing WM

load in the more difficult 2-back task compared to the 1-back task was associated

with a decrease in posterior alpha power. An ANOVA on trial-averaged alpha

power at electrode Oz revealed a main effect of n-back level (F(1,18)=30.15,

p<0.001). Frontal theta power increased at the start of the trial and increased

additionally during the 2-back task compared to the 1-back task (main effect at

electrode Afz: F(1,18)=10.88, p=0.004). No significant effects of the background

noise level were observed on trial-averaged alpha (F(1,18)=1.90, p=0.18) or

theta (F(1,18)=0.29, p=0.60) power changes.

Influence of WM load on speech envelope entrainment We derived temporal

response functions (TRFs, Fig. 4A-B) to analyse how low-frequency cortical ac-

tivity entrained to fluctuations in the speech envelope. The TRF can be viewed as

a speech-evoked response generalized to continuous stimuli (Lalor et al. 2009).

In all conditions, we observed a late ( 170 ms) positive peak in the TRF ampli-

tudes (Fig. 4A-C). Both the amplitude and latency of the late peak was found to

be affected by the background noise level (Fig. 4C). For the higher noise level,

the peak latency increased (F(1,18)=20.43, p<0.001) and the peak amplitude

decreased (F(1,18)=12.95, p=0.002). No significant changes in peak amplitude

(F(1,18)=0.80, p=0.381) or latency (F(1,18)=0.84, p=0.371) were found for the

change in n-back level.

To quantify how precisely the cortical activity entrained to the speech en-

velope in the different WM conditions, we computed the correlation coeffi-
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Figure 6.3: Changes in oscillatory power during the n-back speech task. A. Time-frequency
representations of the power changes between the 2-back and 1-back tasks at frontal electrode
AFz (above) and posterior electrode Oz (below). Stippled lines mark the location of the theta
(above) and alpha (below) bands. Traces below the TFRs show the normalized theta and alpha
band power in the two n-back tasks. Shaded areas in the traces represent +/- 1 s.e.m. across
subjects for each 5 s time-window. B. Trial-mean (5-45 s) power in frontal theta (left) and posterior
alpha (right). C. Topographies showing the trial-mean differences in theta (above) and alpha
(below) power between the 2-back and 1-back tasks (left) and between high and low noise levels
(right). Circles indicate the position of electrodes AFz and Oz. White asterisks indicate electrodes
showing significant power differences between the n-back conditions revealed by the cluster
analysis (p<0.01, corrected). Error bars represent +/- 1 s.e.m. **p<0.01, ***p<0.001.

cient (Pearson’s r) between the responses predicted by the TRF models and

the measured EEG (Fig. 4D-E). The TRF models were first used to predict the

low-frequency (1-13 Hz) EEG response at 12 frontotemporal electrodes from

the speech envelopes. As shown in Fig. 4D, the average prediction correlation

across experimental conditions was high over fronto-temporal electrodes, in

accordance with previous TRF studies (Di Liberto et al., 2015; Crosse & Lalor,

2014). Analysis of prediction correlations between WM conditions revealed

a significant interaction between n-back level and noise level (F(1,18)=6.02,

p=0.025) (Fig. 4E). The prediction values were found to decrease with increasing

n-back level (main effect: F(1,18)=10.68, p<0.005) and increasing noise level

(main effect: F(1,18)=10.54, p=0.005), but the effect of the background noise
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was found to be larger in the 1-back condition than in the 2-back condition.

Since previous work has pointed to different functional roles for delta and

theta-band entrainment in speech coding (Ding & Simon, 2014), we also inves-

tigated the effects of behavioural WM load on speech entrainment separately in

different frequency bands (Fig. 4E). This was done by computing the prediction

accuracies of TRF models estimated from EEG responses bandpass filtered in

the delta, theta and alpha frequency bands. The prediction correlations were

only above the noise floor in the delta and theta band, but not in the alpha band.

As in the analysis of the broadband signal (1-13 Hz), the speech entrained re-

sponse in the delta and theta bands was significantly reduced with increases in

both types of WM load (Fig. 4E). Increasing the background noise level reduced

prediction correlations in the delta-band (main effect: F(1,18)=16.75, p<0.001),

and in the theta-band (main effect: F(1,18)=4.95, p=0.039). Increased WM load

in the n-back task also decreased entrainment in both the theta band (main

effect: F(1,18)=7.10, p=0.016) and in the delta band (main effect: F(1,18)=5.91,

p=0.026).

In our analysis, we focused on entrainment between the envelope of the

speech signal and cortical activity. Reduced entrainment with increased back-

ground noise levels could potentially reflect cortical entrainment to the pre-

sented noisy speech stimulus rather than the underlying speech signal. To

investigate whether the cortical activity tracks the actual noisy stimulus enve-

lope rather than the underlying speech envelope, we performed the same TRF

analysis but for the envelopes of the noisy speech mixture. Prediction accura-

cies based on the noisy speech envelopes were significantly lower than for the

envelope of the clean signals (paired t-test, t=4.93, p<0.001), suggesting that

the cortical activity mainly entrains to the clean speech signal rather than to

the noisy sound mixture.
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Figure 6.4: EEG responses to speech envelopes in the different WM load conditions. Above (A-C):
Temporal response functions (TRFs) derived from linear regression between EEG data and the
speech stimulus. Below (D-E): Speech entrainment measured as the correlation between the
cortical response predicted by the speech envelope and the EEG. A. TRFs at selected electrode
locations to illustrate the responses at different scalp positions. B. TRFs averaged over fronto-
central electrodes in the different experimental WM conditions. C. The amplitude (above) and
latency (below) of the late positive peak in the average TRF around 170 ms. D. Topographical
distribution of the EEG prediction accuracies (Pearson’s r) averaged across conditions. The dots
indicate the positions of the analysed fronto-central electrodes. E. Average prediction accuracies
in different frequency bands. The shaded areas represent chance level prediction. Error bars
represent +/- 1 s.e.m. *p<0.05, **p<0.01, ***p<0.001.

6.5 Discussion

We devised an auditory n-back task embedded in continuous speech to inves-

tigate interactions between WM load and speech processing. Consistent with

previous visual n-back paradigms (Gevins and Smith, 2000; Gevins et al., 1997;

Haegens et al., 2014; Pesonen et al., 2007; Scharinger et al., 2015, 2017), increas-

ing load with higher n-back levels was associated with increased frontal theta

band power and decreased posterior alpha power. At the same time, cortical

entrainment to the speech envelope decreased with increasing WM load. Both

increased background noise levels and higher n-back levels decreased speech

entrained responses in the delta and theta bands.
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6.5.1 Dynamics of alpha and theta power and pupil dilations during

WM load

The continuous speech paradigm allowed us to observe the dynamics of load-

related measures over prolonged periods of WM load. Load-specific changes

in behavioural performance, EEG band power, and pupil size each exhibited

different dynamics over the trial duration. The observation of task-evoked pupil

dilations in the initial 5-10 s of the trial (Fig. 2C) is consistent with numerous

previous pupil studies of WM load or cognitive effort in paradigms with shorter

trials (Beatty, 1982) (Koelewijn et al., 2012; Scharinger et al., 2015; Wendt et al.,

2016; Zekveld et al., 2010). However, we also observed that this was followed by

a similar decrease in pupil sizes for the remaining duration of the trial. During

this decrease, the pupil dilations remained sensitive to n-back load (Fig. 2C).

Behavioural performance, on the other hand, decreased during the trial but only

during the difficult 2-back task (Fig. 2A). This could indicate fatigue. However,

a similar pattern specific to the high-load condition was not reflected in either

the EEG band power or in the pupil responses. In the EEG theta or alpha power

(Fig. 3A), we did not find similar patterns of change throughout the trial but the

individual power traces had considerable local variation.

An initial increase in theta power was observed in the beginning of the trials

(Fig. 3A). This could reflect the increase of items held in WM when participants

were presented with the first numbers of the sequence, consistent with visual

WM tasks (Raghavachari et al., 2001). In the remaining parts of the trial, theta

power remained high and increased additionally during 2-back task compared

to the 1-back task. (Scharinger et al., 2017) recently reported a similar increase in

frontal theta emerging in the course of a visual n-back task, but did not observe a

similar theta pattern during memorization in WM span tasks. This could suggest

that theta is more specifically related to the organization and continuous update

of WM items, and less to memory storage of those items. Specifically, our results

are consistent with a functional role of theta oscillations for organizing multiple

items in a sequential order in short-term memory (Lisman and Jensen, 2013;

Raghavachari et al., 2001).

Decreased alpha power for higher n-back levels throughout the trial is also

consistent with previous n-back studies (Gevins and Smith, 2000; Pesonen

et al., 2007; Scharinger et al., 2015, 2017). Reduced alpha power, however,

has also been observed in a number of other complex WM tasks, and may
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reflect the complex nature of the n-back task. The n-back task requires subjects

to simultaneously update WM information and match stored items with the

current input (Watter et al., 2001). Alpha desynchronization has been proposed

to reflect the fact that a number of WM processes are simultaneously required

for task performance (Klimesch, 1999; Scharinger et al., 2015). Simultaneous

involvement of different WM functions in different task strategies may also

explain the fact that we observed a considerable variability in alpha patterns

between subjects in our data (see Fig. 3B). While some subjects may be able to

search WM content before a new number is presented, others may try to match

stored items each time a new speech item is heard (Watter, 2001). Different

processing strategies that put different demands on the matching subtasks

could potentially generate variability in the observed alpha patterns.

6.5.2 WM processes influence speech entrainment?

Speech envelope entrainment was found to decrease with an increase in the

two types of WM load examined. In visual n-back tasks, the amplitude of P300

evoked potentials have consistently been found to be attenuated by increas-

ing WM load at higher n-back levels (Gevins et al., 1996; McEvoy et al., 1998;

Scharinger et al., 2015; Watter et al., 2001; Wintink et al., 2001). This reduc-

tion has been interpreted in terms of a re-distribution of resources between

WM processes at higher load levels. Yet, decreased speech entrainment with

increasing WM load, as observed in the current study, points to an interaction

between WM processing and auditory processing of the speech stimulus. Thus,

decreased entrainment with higher load levels may reflect a re-allocation of

WM resources at the expense of parsing of the speech stimulus.

A possible explanation for the WM-specific reduction in speech entrainment

could be an interaction between WM processing and attention (Gazzaley and

Nobre, 2012). Numerous studies have demonstrated that selective attention to

a particular talker reduces entrainment to ignored speech streams (Ding and

Simon, 2012a; Fuglsang et al., 2017; Golumbic et al., 2013; O’Sullivan et al., 2014;

Power et al., 2012). Auditory entrainment to speech has also been reported

even in the absence of overt auditory input, e.g. during imagined speech (Deng

et al., 2010; Martin et al., 2014). This raises the possibility that attention-driven

speech entrainment can operate entirely on internal speech representations.

In a continuous updating task such as our current speech n-back paradigm,

WM processing may direct attentional focus towards the internal rehearsal of
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verbal items in the phonological loop. In this case, new items in the continuous

speech stream compete for selective attention with verbal information currently

in the phonological loop. Increasing attention towards the phonological loop

for higher n-back levels would then explain a decrease in cortical activity en-

trained to the ongoing speech stimulus. Such a mechanism would need to be

examined more closely, for example, by comparing entrainment to matching

vs mismatching search targets. We note that the observed reduction in speech

entrainment during WM load is relatively small compared to the reduction in

entrainment typically reported for ignored speech streams in selective attention

tasks.

While higher n-back levels reduced delta-theta entrainment, this was not

accompanied by a significant reduction in TRF amplitudes. Increasing back-

ground noise levels, on the other hand, significantly attenuated and shifted the

latency of the TRF peak. Consistent with this, increasing levels of continuous

background noise have previously been found to increase ERP latencies of both

N100 and P300 components in a syllable discrimination task (Whiting et al.,

1998). Latency shifts and attenuated amplitudes of TRFs with increasing back-

ground noise levels have also been reported previously, but only for earlier TRF

components ( 50 ms) observed in MEG component space (Ding and Simon,

2013). Our current TRF method did not reveal any clear early components

and the later peak may reflect a compound effect of early and later auditory

processing.

Higher WM load levels decreased speech entrainment (Fig. 4) and, at the

same time, induced load-specific alpha-theta power changes (Fig. 3). The phase

of auditory cortical activity entrained to speech has previously been suggested

to be functionally coupled with alpha, theta and beta power in fronto-parietal

regions (Keitel et al., 2017; Park et al., 2015), but the functional significance of

these couplings has not been clarified. In line with the present results, (Keitel

et al., 2017) found that reduced entrainment in the delta band was associated

with increases in parietal theta power. The authors proposed that this could

reflect working memory involvement to compensate for weaker entrainment.

Our results suggest instead that WM load, here induced by the behavioural

task, reduces the speech-entrained response. The WM-specific power changes

found in the current study (Fig. 3) also point to executive functions that are not

specific to speech. However, the functional coupling involved in WM-specific

modulation of speech entrainment may be different from those observed in
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paradigms without specific WM tasks.

In our study, speech entrainment was defined in terms of a linear mapping

between the speech envelope and the EEG signal. A decreased prediction accu-

racy for increasing WM load indicates that WM load influences how accurately

cortical activity tracks acoustic amplitude variations in the speech signal. Such

a picture is consistent with the notion of a general oscillatory network that

modulates activity in sensory cortices in a top-down manner (Schroeder and

Lakatos, 2009). While conceivable, this conclusion may be premature based

on the current results in isolation. Delta-theta envelope entrainment has also

been reported for non-speech signals or unintelligible speech sounds (Lalor

et al., 2009b; Millman et al., 2015; O’Sullivan et al., 2014). In speech signals,

however, the amplitude envelope correlates with the quasi-rhythmic variations

in higher-level speech features, such as the onsets of phonemes or syllables.

Cortical entrainment in speech processing has also been suggested to be re-

lated to parsing of such high-level speech units (Di Liberto et al., 2015; Ghitza,

2011; Giraud and Poeppel, 2012; Zoefel and VanRullen, 2016), and WM load

could modulate speech processing at any or several different levels of speech

processing.

Although we suggest that the effects of background noise on delta-theta

entrainment reflect WM load, changes in entrainment could potentially have

been related to the acoustic degradation of the sound envelope. To investigate

whether a reduction in entrainment might reflect the fact that cortical activity

entrains to the noisy signal, we compared entrainment to the clean speech

signal (without noise) with entrainment to the noisy sound stimulus actually

presented to the listeners. In agreement with previous results (Ding and Simon,

2013; Fuglsang et al., 2017), this suggested that cortical activity predominantly

entrained to the underlying speech signal rather than to the noisy sound mix-

ture. While this suggests an effect of WM load induced by the noise interference,

our design does not allow us to completely dissociate the effects of acoustic

degradation of the sound signal from inhibitory load caused by these degrada-

tions. Alternative paradigms that burden WM inhibitory load without affecting

the acoustic stimulus, e.g. by presenting incongruent speech features, might

further dissociate these effects.
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6.6 Limitations

In our study, we used long continuous speech stimuli (∼45-55 s) to investigate

auditory entrainment during WM load. However, simultaneously examining

WM-dependent effects on speech entrainment and on oscillatory power in-

volves a trade-off in terms of experimental design. TRF methods are generally

found to be more robust to EEG artefacts but they require long trials for esti-

mating the stimulus-response mapping at lower frequencies. Although the TRF

methods allow neural responses to continuous speech to be examined, longer

trials are not optimally suited to track spectral power changes in the EEG. Power

estimates are more susceptible to EEG artefacts and activity unrelated to the

stimulus or task. In the current study, we observed a substantial individual

variability in the considered power measures. It is possible that alternative

paradigms using shorter trials and more trial averages would be more sensitive

to the oscillatory power changes associated with these WM tasks and could re-

veal additional effects. Also, the current analyses relied on EEG power estimates

in fixed frequency bands, although the spectral characteristics of alpha and

theta power may vary considerably between subjects (Haegens et al., 2014). The

group analyses of theta-alpha power may thus be susceptible to between-band

leakages.
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SNR, signal-to-noise ratio; TFR, time–frequency representation; TRF, temporal

response function; WM, working memory.



124 6. EEG correlates of working memory load during auditory processing



7
Real-time enhancement of attended

speech in an EEG-based brain-computer
interface system: a case study

Chapter 3, 4 and 5 demonstrated that it is possible to decode the attentional

selection of normal-hearing and hearing-impaired listeners in multi-talker en-

vironments from offline electroencephalogram (EEG) data. This opens the

possibility for using EEG in brain-computer interface systems (BCIs) that allow

listeners to adjust the relative level of attended and unattended speech via EEG

correlates of auditory attention. However, to date, EEG-based classification

of attended speech has only been demonstrated in ”offline” listening scenar-

ios where classification decision does not affect acoustic input, and whether

attention-based enhancement of attended speech can be achieved in real-time

remains unanswered. In particular, it remains unclear how a BCI-controlled

dynamical change in acoustic feedback influences EEG correlates of auditory

attention, and whether listeners can switch attention to an BCI-attenuated

speech streams.

This chapter presents, as a case-study, a real-time BCI experiment in which

a hearing-impaired listener performed an auditory attention-switching task

in a closed-loop setup. A real-time processing system was designed for this

purpose. First, the system synchronizes EEG and two pre-recorded speech audio

streams. The system then uses a support vector machine (SVM) on canonical

correlations between canonical variate pairs of EEG features and audio features

to classify attended speech streams. The classifier decision function is then

mapped to a relative gain of the two talkers. Both closed-loop (with acoustic

feedback), and open-loop trials (without acoustic feedback) were considered.

In 90 s long closed-loop and open-loop trials, the subject was asked to first

This chapter is based on work by Daniel D.E. Wong, Søren A. Fuglsang, Jonatan Marcher-

Rørsted, Torsten Dau, Sergi Rotger Griful, Enea Ceoline, Alain de Cheveigné & Jens Hjortkjær.

125



126 7. Real-time enhancement of attended speech

attend to one speaker, and then cued to switch attention to the other speaker

after 45 s. In closed-loop trials, the classifier decision function was mapped to a

relative target-to-masker gain ratio of maximum 10 dB. The attention-switching

paradigm allowed for an investigation of whether the subject could switch

attention to previously ignored speech streams that had been attenuated by the

BCI system.

7.1 Experimental details

The subject who took part in the experiment was a 53 year old male with a

steeply-sloping symmetric audiometric profile (Fig. 7.1). Speech stimuli (audio-

book material) consisting of two talkers (one male, one female) were presented

over two loudspeakers at (±60o relative to the position of the subject). The

speech stimuli were normalized to have equal loudness when played without

EEG feedback, and amplified to compensate for reduced audibility based on

the subject’s audiogram (Moore & Glasberg, 1998). 64-channel EEG data were

recorded using a BioSemi ActiveTwo system. Additional electrodes were placed

at the mastoids as well as below and above the right eye of the subject.

Figure 7.1: Pure-tone audiogram profile of the participant.

The experiment proceeded as follows. In 28 trials of 60 s duration, the

subject was instructed to attend to either the male- or female talker. The spatial

position of the male and female speaker, as well as the position of the target

speaker was randomized. Classification models were trained on data from these

trials and used in subsequent open-loop and closed-loop trials. Open-loop and

closed-loop trials were grouped in two blocks of 12 trials. Each block of 12 trials
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Figure 7.2: a Schematic illustration of the trial sequences in the attention-switching experiment. b
Schematic of the experimental design. During the training session, the subject listened selectively
to one of two competing speech streams in 60 s long trials. The EEG data recorded from the
training session was used to train EEG-based attention classifiers. In 8 open-loop and 12 closed-
loop trials, the subject listened to 90 s long competing speech streams and was cued to switch
attentional focus to the competing speaker after 45 seconds. In the open-loop trials the classifier
output did not affect the relative level difference between the two speech streams. In the closed-
loop trials, the output from the classifier changed the relative levels of the individual speakers.
The gender of the attended speech as well as the position of the attended speaker was in all cases
randomized across trials.

consisted of 4 open-loop trials and 8 closed-loop trials. In the open-loop trials,

the output from the classifier did not affect sound level of the two speech streams.

In the closed-loop trials, the output of the classifier was mapped to relative gain

differences between two speech streams. The subject was instructed to fixate

gaze in the middle of the presentation screen during all trials.

7.1.1 Real-time decoding pipeline

A schematic of the real-time decoding pipeline is shown in figure 7.3. The

decoding pipeline was implemented in OpenVibe (Renard et al., 2010). For

real-time decoding, EEG and audio signals were streamed to OpenVibe (Re-

nard et al., 2010) via Lab Streaming Layer (Kothe, 2013), synchronized in time

and thereafter downsampled to 64 Hz. The EEG data were high-pass filtered

and re-referenced to a common-average over all scalp EEG electrodes. Elec-

troocular (EOG) artefacts were regressed out from the data via a pretrained

spatial filter. The envelopes of the two speech audio streams were extracted

and power-law compressed (c = 0.3). The speech envelopes and the EEG data

were both processed through a dyadic filterbank that was formed via multiple

smoothing kernels and first order forward differencing. Whitening and PCA

transforms obtained from the training data was applied to whiten the data



128 7. Real-time enhancement of attended speech

and reduce dimensionality. The pre-processed audio features were offset by

a fixed time lag relative to the EEG data. The EEG and audio were then trans-

formed using transform matrices obtained with canonical correlation analysis

(CCA) (de Cheveigné et al., 2018a). CCA transform matrices were applied sepa-

rately to features in EEG data and each audio stream. Correlation scores were

computed over 8 s long windows for each canonical correlate pair (separately

for each speech stream). A pretained SVM classifier was then used to classify

attended speech from z-scored correlation scores. The classifier output was

nonlinearly transformed using a double-sided Weibull function. The output

from the Weibull function was used to control the relative sound pressure level

of each of the sound streams. This nonlinear transformation ensured that unre-

liable classification decisions did not have a strong effect on audio level, while

simultaneously mapping ”near-certain” classification decisions to maximum

(10 dB) sound pressure level enhancements.

The EOG denoising filter, the whitening matrices, the CCA transform ma-

trices and the SVM classifier were trained offline in a Matlab implementation

that replicated the real-time decoding pipeline (Wong et al., 2018; de Cheveigné

et al., 2018a).

7.2 Results

7.2.1 Results from open-loop experiments

Figure 7.5 shows the results from the open-loop experiment. The data in this

figure has been sign-corrected such that the first 45 s of each trial correspond

to ”attend speaker 1” regardless of the speaker identify or speaker location. The

left panel in Figure 7.4 shows the output of the SVM classifier in eight open-

loop trials. This panel depicts the classifier output per trial over the entire trial

duration. After the attention switch at 45 s, there is a sign change in the average

classifier decision function at 55.3 s. The classifier assigned correct labels to

each of the two speakers 74 % of the time. When excluding data from each trial

in periods from 0 s to 10 s and from 45 s to 55 s, the classifier assigned correct

labels to each of the two speakers 84 % of the time.
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Figure 7.3: Schematic overview over the CCA-based decoding pipeline implemented in OpenVibe.
Each box represents a python processing module. The decoder receives synchronized EEG and
audio streams. The two audio streams are separately processed (right branch). Envelopes of
both audio streams are extracted and downsampled to 64 Hz. Next, the envelopes are filtered
with smoothing kernels and each transformed using CCA projection vectors. The EEG data
(left branch) are filtered, denoised, passed through a dyadic filterbank and finally transformed
according to the CCA mapping. Each of the canonical components is correlated pairwise, such
that the EEG components are correlated with the components extracted from both of the audio
streams. These correlations can subsequently be mapped into a classification decision using
the SVM classifier that had been trained on the offline data recorded from the training session.
Finally, the classifier decision function is nonlinearly transformed using a double-sided Weibull
function. The output from the Weibull function is used as a control stream that adjusts the
relative sound pressure level difference between the two speech streams.
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Figure 7.4: Results from open-loop experiments. In this figure, the output from the classifier has
been sign-corrected such that output from the classifier over the first 45 s always correspond
to “attend speaker 1” regardless of the speaker identify or speaker location. Left panel: output
of SVM classifier in each of the 8 open-loop trials. Gray traces here reflect data from individual
trials and black line indicates average across trials. Right panel: distribution over the classifier
decision function output from all trials in the time period from 0 s to 45 s post trial onset (orange
curve) and from 45 s to 90 s post-trial onset (black curve).

7.2.2 Results from closed-loop experiments

Fig 5. shows the results from the 12 closed-loop trials where the classifier deci-

sion function mapped out to relative sound enhancements of the two competing

audio streams. The data in this figure has been sign-corrected as in Fig. 7.4,

such that the first 45 s of each trial correspond to ”attend speaker 1” regardless

of the speaker identify or speaker location. Fig 7.5a show the classifier decision

function for each of the 12 trials. After the attention switch at 45 s, there is a

sign change in the average classifier decision function at 48.9 s. In closed-loop

trials, the classifier assigned correct labels to each of the two speakers 77 % of

the time (Fig. 7.5d). On average, the BCI system produced an relative increase

in the sound pressure level of the attended speech of 3.63 dB (Fig 7.5b). When

excluding data from each trial in periods from 0 s to 10 s and from 45 s to 55 s,

the relative increase in the sound pressure level of the attended speech was 4.24

dB.

7.2.3 Subjective ratings in open-loop and closed-loop trials

At the end of each trial the subject was asked to answer questions about task dif-

ficulty and speech understanding. Here, the subject responded to each question

with a score between 0 and 10. When asked how much effort it required to follow

the attended speaker (0 = no effort, 10 = high effort), the participant obtained a

score of 4.9 (moderate effort) in open-loop trials, but 3.6 in closed-loop trials.

Similarly, when asked how much effort it required to switch attention from one
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Figure 7.5: Results from closed-loop experiments. a: output of SVM classifier each of the closed-
loop trials. b: Distribution of the classifier output over all trials in the time period from 10 s to 45
s post trial onset (orange curve) and from 55 s to 90 s post-trial onset (black curve). c: Applied
gain (dB) to each of the two speakers in both trials. c: Average applied gain (in dB) to the two
speakers in the first half of each trial (from 0 s to 45 s post trial onset) and in the second half of
each trial (from 45 s to 90 s post trial onset).

speaker to the other, the subject scored low in both open-loop trials (2.5) and

closed-loop trials (2.45) indicating that it required little effort. When asked to

rate speech understanding (0 = nothing understood, 10 = everything under-

stood) the subject scored 6.2 in open-loop trials and 7.1 in closed-loop trials,

potentially indicating an improved speech understanding with the closed-loop

BCI system.

7.3 Discussion and future work

This BCI case study demonstrates that real-time EEG-based attention decod-

ing can be achieved in a hearing-impaired listener both in a scenario where

classifier output does not affect stimulus input (open-loop scenarios), but also

in a scenario where the classifier output controls the relative level difference

between attended and unattended speech. The latter scenario constitutes a

closed-loop system, as classifier decision depends on the audio input.

A crucial aspect of EEG-based attention decoding is how robustly and rapidly

the BCI system detects attention switches. The performance and speed of this

BCI system is, however, limited by the length of the windows used to compute
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canonical correlation coefficients as well as the duration of the EEG/envelope

smoothening kernels. In the present study, we chose decision windows and

kernel lengths inspired by findings in a recent offline study (Wong et al., 2018).

However, although the BCI system was relatively robust at decoding attended

speech streams, the speed of the BCI system was rather limited. More work will

be needed to investigate whether similar performance can be obtained with

shorter decision windows in closed-loop scenarios.

In the present study, the output from the classifier could at most amplify

attended speech with 10 dB. This choice was based on preliminary findings

from BCI sessions with normal-hearing subjects. If the relative enhancement

of attended speech becomes too pronounced, it may be impossible to switch

attention to the suppressed speech stream. It is possible that other ways to map

from classifier output to relative sound level differences between attended and

unattended speech may improve speech recognition and BCI performance.

It is possible that neurofeedback in closed-loop scenarios may enable listen-

ers to rely on other strategies to improve the neurofeedback. The BCI-feedback

could, for example, result in increased listening effort or motivation during

closed-loop control. This would, in turn, potentially affect both classifier per-

formance, but also speech understanding. It remains to be clarified whether

BCI operation is affected by user training during closed-loop experiments.

7.4 Conclusion

The results from this BCI case study demonstrate that real-time EEG-based

attention decoding could be achieved in a hearing-impaired listener both in

open-loop and in closed-loop scenarios. The classification scheme considered

here was based on a stimulus-response model that mapped between envelopes

of attended speech and EEG data. This work provides a step further towards a

BCI system with real-time EEG-based attentional control over acoustic scene

analysis hardware.
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Overall discussion

8.1 Summary of main findings

Chapter 3 investigated whether a sensorineural hearing impairment influences

cortical EEG responses to tones and to speech. A cohort of twenty-two older

adults with sensorineural hearing loss and twenty-three age-matched normal-

hearing controls took part in the study. Each participant underwent a battery

of clinical, psychophysical and electrophysiological tests. Results from psy-

chophysical tests suggested HI-related deficits in the identification of speech in

noise even when the speech signal was amplified to compensate for reduced au-

dibility. Similarly, the HI listeners exhibited less temporal release from masking

compared to age-matched NH listeners in a tone detection task. In a selec-

tive speech-listening EEG experiment with two loudness-matched competing

speech streams, comprehension questions suggested equally good speech com-

prehension in both listener groups. However, the HI listeners rated the two-

talker listening task as being more difficult. Results from stimulus-response

analyses suggested that the fidelity of the cortical EEG entrainment to envelopes

of attended speech was enhanced in the HI listener group compared to the NH

listener group. In addition, it was possible to classify attended speakers from

EEG responses to speech mixtures with equally high classification accuracies in

both listener groups. To further investigate whether HI-related effects on corti-

cal EEG responses would be observed for non-speech sounds, EEG responses

were also obtained to tone sequences unfolding on fast (gamma range) and slow

(theta range) time scales during passive listening. The results from these experi-

ments suggested a more precise theta-range EEG phase-locking to rhythmic

tone stimuli in HI compared to NH listeners. No effect of HI on N1 amplitudes

was observed for ERPs evoked by tones. Overall, these results suggested that,

even though a sensorineural hearing loss may be associated with exaggerated

sound-evoked cortical EEG responses, it does not necessarily hinder attentional

modulations of cortical auditory entrainment responses.
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Chapter 4 extended previous investigations on the neural correlates of se-

lective attention to speech (Ding and Simon, 2012a,b; Mesgarani and Chang,

2012; Mirkovic et al., 2015; O’Sullivan et al., 2014), to study EEG correlates of

cortical speech envelope entrainment in noisy and reverberant acoustic settings.

Single-trial EEG activity was recorded from normal-hearing subjects listening se-

lectively to one of two or more competing speakers in anechoic and reverberant

environments. It was demonstrated that spatiotemporal reconstruction filters

trained to reconstruct envelopes of attended speech from EEG activity could be

used to discriminate between attended and unattended speakers with equal

classification accuracy in anechoic and reverberant environments. EEG-based

attention classification accuracies were in the same order of magnitude as those

reported in previous studies with anechoic speech mixtures (Mirkovic et al.,

2015; O’Sullivan et al., 2014). Moreover, the EEG entrainment to envelopes of

attended speech was stable against competing speech both in anechoic and

reverberant listening environments. These results suggested that the cortical

EEG correlates of entrainment to envelopes of attended speech are relatively

robust in naturalistic listening environments.

Chapter 5 investigated how different regularization schemes affect stimulus-

response mappings between envelopes of competing speech streams and EEG

responses. Five different regularization schemes and two different stimulus-

response model types (forward/backward models) were considered. Since the

stimulus-response models may be used to discriminate between attended and

unattended speech, the model performance was evaluated on a classification

task where the goal was to infer which of two speech streams a listener attends

to (e.g., in terms of attention classification accuracies). Moreover, the regression

model performance was evaluated by means of how robustly it could predict

unseen data (regression accuracies). It was found that the regularized backward

models outperformed regularized forward models in terms of classification

accuracies. Whereas regularization did not have an effect on regression or clas-

sification accuracies for forward models, it was found to improve regression and

classification accuracies for backward models. The results suggested that some

regularization methods may lead to better regression accuracies for backward

models that have a higher number of free parameters. However, the increased

regression accuracies do not necessarily entail better attention classification

accuracies.

In chapter 6, the effects of cognitive task load on continuous speech EEG
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measures were investigated. Multi-channel EEG were recorded from younger

normal-hearing listeners performing an auditory n-back task on speech se-

quences in different levels of background noise. Two different n-back levels and

two different background noise levels were considered. The n-back level was

varied to induce a load of working memory (WM) and the noise level was varied

to impose increased inhibitory demands on WM. In the 1-back conditions, lis-

teners were instructed to report repeated digits, and had to continuously update

digits maintained in WM. In the 2-back conditions, the listeners had to detect

whether digits matched those presented two digits earlier. In 2-back conditions,

the subjects had to update digits maintained in WM and to shift attentional fo-

cus between to-be-ignored and to-be-compared digits (Scharinger et al., 2017).

The findings suggested that n-back level and noise-level may affect not only

spatio-spectral EEG power, but also the cortical EEG correlates of speech en-

velope processing. Consistent with results from visual n-back paradigms, the

results suggested that posterior alpha band power (8-13 Hz) decreases with n-

back level, while frontal theta (4-8 Hz) power increases with n-back level. On the

other hand, speech envelope entrainment as measured with EEG forward mod-

els was found to decrease with both higher noise level and higher n-back level.

These results could support the idea of a task-dependent coupling between

alpha or theta power and speech entrainment (Keitel et al., 2017), although such

couplings were not investigated quantitatively.

In chapter 7, a real-time attention switching BCI paradigm was discussed.

This case study was exploratory in nature and was intended as a proof-of-

principle to demonstrate closed-loop steering of acoustic feedback based on

online EEG attention decoding. An EEG-based attention decoder with 8-s long

classification windows was here trained offline on 28 minutes of EEG data pre-

recorded from a hearing-impaired subject listening selectively to one of two

competing speech streams. The attention decoder was then used to classify

attended speech in real-time in trials where the subject performed an attention

switching task on spatially separated competing speech streams. The results

suggested that the hearing-impaired listener was able to selectively amplify

attended speech using closed-loop BCI control.
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8.2 Limitations of the approach chosen in this work

The work presented in this thesis focused on EEG responses to continuous

speech stimuli. Recently there has been an increased interest in the use of

continuous speech stimuli and naturalistic sound stimuli in auditory neurosci-

entific research (Theunissen and Elie, 2014), including in human EEG studies

(Broderick et al., 2018; Crosse and Lalor, 2014; Crosse et al., 2015; Khalighinejad

et al., 2017; Mirkovic et al., 2016; O’Sullivan et al., 2017a; O’Sullivan et al., 2014),

fMRI studies (Heer et al., 2017; Huth et al., 2016; Kell et al., 2018; Santoro et al.,

2014, 2017), ECoG studies (Golumbic et al., 2013; Hullett et al., 2016; Mesgarani

and Chang, 2012; Mesgarani et al., 2014b; Pasley et al., 2012) and MEG studies

(Ding and Simon, 2012a,b, 2013; Luo and Poeppel, 2007; Puvvada and Simon,

2017). It seems plausible that results from neuroscientific experiments with

speech stimuli may better generalize to everyday listening scenarios than results

obtained in experiments with synthetic sounds. However, as described in Ap-

pendix A, there can be a number of challenges in the interpretation of encoding-

and decoding results from experiments with speech stimuli. Auditory process-

ing of speech involves various complex, interrelated hierarchical processing

steps. Although encoding models theoretically can provide a full functional

description of what task- or stimulus-related features that are represented in

the neural data recordings (and how much of the explainable variance in the

data they account for; Naselaris et al., 2011), it is not possible to exhaust all

possible speech features that are represented in the neural recordings. The

stimulus-response models can erroneously signify stimulus representations

due to correlated stimulus features that have not been considered in the analysis

(see discussion in Appendix A) or due to nonlinear computations that are not

captured by the models (Christianson et al., 2008).

In the same vein, there can be conceptual caveats entailed by experiments

on task-driven auditory attention (Fritz et al., 2007) and it can be difficult to

experimentally monitor the attentional focus of listeners. This is especially

relevant for experimental paradigms with prolonged trials and dynamic stim-

uli, such as the experiments considered in this thesis. The main motivation

for considering experiments with prolonged speech stimuli was that they may

represent naturalistic listening scenarios better than experiments with syn-

thetic stimuli. In experimental paradigms with shorter trials, it may be more

straightforward to assess attentional focus from behavioural data and task de-
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sign. However, in such experiments, the stimuli may not be as ”engaging” and

may lack the statistical properties of naturalistic sounds. Moreover, it is in these

cases not always clear whether the drawn conclusions generalize to even more

complex listening scenarios (Churchland et al., 2010). There exists, as often the

case, a trade-off between experimental control and task naturalness.

For the analysis of single-trial EEG responses to speech mixtures, the work

presented in this thesis focused mainly on slow (<10 Hz) modulations in the

speech signals (in line with previous work, Crosse et al., 2015; Ding and Simon,

2012a,b, 2013; Mirkovic et al., 2016; O’Sullivan et al., 2014; Pasley et al., 2012

and previous theoretical models proposed by Ghitza, 2011; Giraud and Poeppel,

2012). Such slow envelope modulations are thought to provide important cues

for speech perception (Drullman et al., 1994; Jørgensen et al., 2013). However,

M/EEG measures of cortical auditory entrainment to speech envelopes may

reflect distinct neural computations, such as neural computations related to

parsing syllables, detection of edges in the envelopes or to perceived loudness

(Ding and Simon, 2014). M/EEG envelope entrainment may even be influenced

by bottom-up adaptive processes, binaural fusion, listening effort or listening

context (e.g. listening cues or predictability). What has been referred to as

”auditory EEG envelope entrainment” in this work could therefore be epiphe-

nomenal to other correlated brain processes. Other experimental paradigms

would be needed to establish the causal nature of these observations.

Finally, as for any correlational neuroscientific study, the observation of

a feature that appears to be represented in the neural data recordings (e.g.

manifested in high encoding accuracies) does not necessarily imply that this

feature has relevance to the brain/listener (Wit et al., 2016), but may only support

speculations about why the feature is encoded in data. Similarly, if the neural

data do not represent stimulus-related information, this does not necessarily

imply that the underlying neural circuits do not represent such information (e.g.

Haynes, 2015).

8.3 Perspectives

In the single-trial EEG experiments considered in this thesis, the main focus was

on listening environments with near-intact speech recognition. However, in

challenging listening environments with more unfavourable signal-to-noise ra-

tios, it may be impossible to segregate target sounds from listening background.
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This may be reflected in cortical auditory M/EEG entrainment responses and

can affect EEG-based attention decoding. Future studies will be needed to

clarify whether it is possible to classify attended speech with BCI systems in

even more challenging listening environments. Moreover, the premise for the

work in this thesis was that the attention decoders have access to non-corrupted

versions of the attended and unattended speech. In order for the EEG-based

stimulus-response models to have relevance for portable BCI systems in every-

day life, the system must also address the acoustic scene analysis problem, for

instance, by using microphone beamforming techniques to recover the individ-

ual sound sources (O’Sullivan et al., 2017b; Van Eyndhoven et al., 2017). Finally,

although it has been established that the attentional selection of listeners can

be decoded from offline single-trial EEG data, it still remains to be clarified

whether similar results can be achieved in a variety of closed-loop scenarios (e.g.

Chapter 8) with fewer electrodes or even with portable EEG systems outside

laboratory settings (De Vos et al., 2014; Debener et al., 2012). Future studies will

be needed to investigate whether other decoding strategies (e.g., (Akram et al.,

2016; Miran et al., 2018; de Cheveigné et al., 2018a)) can improve EEG-based

auditory attention decoding accuracies.
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A
Challenges in the interpretation of

results from encoding and decoding
analyses

Encoding and decoding models are important tools that can provide insights

into how information about sounds is represented in M/EEG activity. However,

encoding and decoding models each have their strengths and their weaknesses,

and caution should be made when interpreting results from encoding- and

decoding analyses. The following sections provide examples that illustrate

caveats entailed by encoding and decoding analyses.

A.1 Example 1: Correlations among stimulus features may

affect interpretation of decoding weights

It was demonstrated in Chapter 2 section 2.3 that a linearized encoding model

can account for correlations among stimulus features when predicting a neural

response. The stimulus-reconstruction model in Eq. 2.2 does, however, not

take correlations among stimulus features into account when reconstructing

S (t , f ) (Holdgraf et al., 2017). Figure A.1 illustrates how this may be reflected in

stimulus-response mappings in a scenario with simulated neural data. In this

simulation, a neural response, r (t ), is simulated as a convolution of s (t , f ) and

a pre-defined STRF plus a distractor signal d (t ). The simulated STRF (Fig. A.1b)

is tuned to low frequencies and has an early and temporally local excitatory

region (red) followed by an inhibitory region (blue). Fig. A.1c,d shows weights of

encoding and decoding models that were fit to the data using Ridge regression

(Chapter 2, Eq. 2.5). It can be seen that the encoding model (Fig. A.1c) approx-

imates the simulated STRF with high accuracy. The weights of the decoding

model (Fig. A.1d) are in contrast ”smeared” across frequencies compared to

the target STRF. Due to non-orthogonality of the speech spectrogram represen-

tation, the decoding model wrongly assigns significant weights to frequency
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channels that did not drive the neural response, but were correlated with the

ones that do (Holdgraf et al., 2017; Weichwald et al., 2015). This can in the worst

case lead to incorrect conclusions about which spectro-temporal attributes of

the stimulus feature that drive the response.

+

d(t)

s(t,f) STRF r(t)

a Stimulus-response simulation b c d

Figure A.1: Visualising spectro-temporal receptive fields estimated with encoding- and decoding
models. (a) Neural data, r (t ), was simulated as a convolution of s (t , f ) and a predefined STRF
(b). (c) When using a Ridge-based encoding model to estimate the STRF from r (t ) and s (t , f ) the
model approximates the target STRF well. However, the STRF recovered with the decoding model
(d) has artefacts and is ”smeared” out compared to the target STRF, due to statistical regularities
in s (t , f ). Figure was inspired by work in Holdgraf et al., 2017

A.2 Example 2: The influence of stimulus-unrelated ac-

tivitiy on model interpretation

Encoding and decoding models can offer complementary information about

statistical stimulus-response dependencies (Kriegeskorte, 2011; Weichwald

et al., 2015). Since the encoding model in Chapter 2 Eq. 2.1 predicts R (t , n )

independently for each n , an encoding model can be useful for investigating

whether a feature, S (t , n ), is encoded in a single-channel response. If this is

the case, then the model should be able to predict the given channel response

with prediction accuracies that are greater than chance level. In contrast, the

decoding model in Eq. 2.2 exploits statistical regularities in R over a range of

channels/sensors and time lags to reconstruct S (t , f ). Therefore, if a decoding

model can reconstruct S (t , f ) based on a multi-dimensional M/EEG response,

then it instead implies that information about S (t , f ) is represented in response-

patterns over a set of channels/sensors (Friston, 2009).
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This is illustrated below using simulated data. Consider two simulation

scenarios where data from two channels, y1(t ) and y2(t ), are recorded. Both

channels contain a noisy distractor signal, d (t ), that is correlated across chan-

nels. However, in the first scenario, y1(t ) also contains a time-delayed target

signal s (t ) and in the second scenario, the channels are switched such that y2(t )

now instead contains a time-delayed target signal s (t ). Encoding models can be

used to investigate whether each of the two channel responses, y1(t ) and y2(t ),

can be predicted from time-lagged versions of s (t ). From figure A.2a, it can be

seen that the encoding models accurately predict which of the two channels

contains s (t ) in the two scenarios, but can only account for some fraction of

variance in the data due to the noise d (t ).

Conversely, the decoding models reverse the problem and learn to recon-

struct s (t ) from statistical regularities across the time-shifted versions of the

two-channel response. In this case, since the distractor signal is correlated

across channels, the decoder can simply regress out d (t ) (e.g., by assigning

weights with opposite signs to each channels) and therefore perfectly recon-

struct s (t ) in both scenarios. However, although the decoder here was more

robust against the distractor d (t ), the predictive performance does not provide

information about which of the two channels actually contains the signal. No-

tice that in scenarios where target signal and distractor signals are not linearly

separable, the stimulus reconstruction decoder performs less well (Fig. A.3)c).

To further highlight differences between encoding and decoding models,

Fig. A.3 shows model weights of three stimulus-response models that were

trained on simulated neural data. The same simulation scenario as in Fig. A.2a

is considered here (i.e., y1(t ) = s (t −125 ms)+d (t ) and y2(t ) = d (t )). It can be

seen in Fig. A.3 that the encoder (estimated using Ridge regression, Chapter 2,

Eq. 2.5), only assigns a significant nonzero weight to channel 1 at a time-lag

of 125 ms, which is consistent with the actual relation between s and y1. The

encoder weights may thus provide information about how s relates to y1 and y2

and how a unitary change in s maps out to the two channels. In contrast, the

decoder (Fig. A.3c) assigns significant nonzero filter weights of opposite sign

to channel 1 and 2 at a time-lag of 125 ms post-stimulus, even though y2 does

not contain s . The reason for this is that the distractor signal, d , is correlated

across channels. The decoder can exploit this to regress out d . The CCA model

(Chapter 2, Eq. 2.8) learns a spatial decoding filter (Fig. A.3e), which also assigns

significant nonzero weights of opposite sign to both channels, to ”filter out” the
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+

d(t)

s(t) Delay y1(t)

y2(t)

+

d(t)

s(t) Delay

y1(t)

y2(t)

125 ms

125 ms

a

b

c

Figure A.2: Using encoding and decoding models to characterize the stimulus-response relation-
ship between a signal, s , and two recording channels y1 and y2. Different simulation scenarios
are considered. In simulation (a) and (b) it is assumed that only one of the two channels responds
to the stimulus, s (t ), (after a 125 ms delay), but that both channels contain correlated noise
d (t ). The encoding analyses accurately detects which of the two channels that responds to s in
both cases. The stimulus reconstruction model perfectly manages to reconstruct s because the
noise is correlated across channels. However, as formulated here, the stimulus reconstruction
model does provide insights about which of the individual channels that contain s . Simula-
tion (c) extends simulation (a), by evaluating encoding and decoding performance as a func-
tion of the between-channels correlation ρ (d1(t ), d2(t )) for distractor signals, d1 and d2, where
y1(t ) = s (t −125m s )+d1(t ) and y (t ) = d2(t ). In this case, when d1 and d2 are no longer correlated,
the decoding model achieve similar accuracies as the encoding model. See text for more details.

noise from the responses. In addition, since the objective function of the CCA

model is sign invariant, the CCA encoding filter (Fig. A.3d) has a strong negative

activation 125 ms after the stimulus onset. This simulation highlights that only

the encoding model parameters can inform about how s (t ) relates to the each

of the observed responses y1 and y2.

Decoding models can be transformed into corresponding encoding models

which can be useful for model parameter interpretation (Dmochowski et al.,

2017; Haufe et al., 2014; Parra et al., 2005). The idea is that if a decoding model

transforms a neural response Y into another representation V = Y Wb then

a corresponding forward map can be characterized in a least-squares sense

(Wf =
�

V T V
�−1

V T Y ) (Haufe et al., 2014). This idea can be extended to CCA

model from Chapter 2, Eq. 2.8 (Dmochowski et al., 2017).
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Figure A.3: An illustration of how linear encoding and decoding model weights can differ and
how it can be difficult to interpret decoding model weights. This example simulates a neural
data recorded from two channels, y1 and y2. The data in channel y1 is assumed to respond to a
stimulus signal, s , with a delay of 125 ms plus a distractor signal y1(t ) = s (t −125 ms)+d (t ). It
assumed that the other channel, y2 only picks up the distractor signal, y2 = d (see a). See text for
details.

.

A.3 Example 3: Regularization methods may affect inter-

pretation of model weights

Linearized encoding models with different model constraints may achieve com-

parable predictive performance, but have different filter shapes (Thorson et

al., 2015). This can affect the interpretation of encoding model weights, since

”near-optimal” encoding models may have different ”shapes” depending on

what type of regularization was used to constrain the model coefficients.

Figure A.4 illustrates how different types of regularization can affect STRF

model weights and result in similar test-set prediction accuracies. In this sim-

ulation, a neural response to speech, r (t ) is simulated as a convolution of a

speech spectrogram s (t , f ) and a predefined STRF (Fig. A.4b, top left panel) plus

additive noise. Here, the regressor is highly autocorrelated. The different regu-

larization methods introduced in Chapter 2 are considered: Ridge regression

(Chapter 2, Eq. 2.5), Lasso (Chapter 2, Eq. 2.6) and a model that constrains the

model coefficients via factorization and parameterization (Chapter 2, Eq. 2.7).

Fig. A.4c-e shows the recovered STRF models with the three different models.

The test set prediction accuracies (indexed by Pearson’s correlation coefficient

between model predictions and target) are shown in the center of each panel

for the different models. It can be seen that the Ridge estimator (Fig. A.4c)

recovers the target STRF with good accuracy, but that many of its filter weights

attain nonzero values (unlike the actual target STRF). From Fig. A.4d it can be
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seen that the filter estimated with the Lasso correctly enforces more of the filter

weights to zero, but that the excitatory and inhibitory regions of the recovered

STRF are non-smooth unlike the target STRF. The factorized and parameterized

model (Fig. A.4e) in this simulation almost perfectly recovers the STRF, since

the simulated STRF had Gaussian shapes. For other more complex STRF shapes

with several excitatory/inhibitory regions, the factorized and parameterized

model in Chapter 2, Eq. 2.7 is expected to perform less well. From this sim-

ulation it was apparent that, despite differences between model weights, the

different regularization methods yielded comparable test-set accuracies. The

choice of adequate regularization methods may thus not always be obvious, but

can affect interpretation of model weights.

+

d(t)

s(t,f) STRF r(t)

a
Stimulus-response simulation

b c d e

=

Figure A.4: An illustration of how model constraints affect encoding model weights for a simulated
neural response to a speech stimulus. The neural response, r (t )was simulated as a convolution
of a speech spectrogram, s (t , f ) and a predefined STRF (b, top left panel) plus Gaussian noise
d (t ). Different systems engineering methods are used to recover the predefined STRF from r (t )
and s (t , f ). The factorized and parametrized filters were learned using a nonlinear optimization
algorithm. c-e shows the recovered STRF obtained with different methods. See text for more
details.

A.4 Example 4: Interpretation of model performance and

model parameters with little data

The predictive power of encoding or decoding models may depend on how

much data that are available for model fitting. This may both affect interpre-

tation of model performance, but also interpretation of model weights. This

is illustrated in Fig. A.5 for an STRF model fit to actual EEG data using Ridge

regression. The data used for this is example is EEG data recorded from 22

subjects listening to selectively to one of two competing speech streams. The
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encoding models were here optimized to predict EEG responses from spec-

trograms of attended speech. From Fig. A.5, it can be seen that the ability of

the encoding models to predict novel data is substantially better for encoders

fit to ∼17 min of data compared to encoders fit to ∼4 min of data. Similarly,

when comparing the weights of the encoders (inlets, Fig. A.5), it can be seen

that the early positive activations are ”smeared out” for encoders trained on ∼4

min of data compared to encoders trained on ∼17 min of data. This underlines

the importance of training data and exemplifies that the interpretation of filter

weights and predictive performance may be affected by the amount of data

used for model fitting.

Encoding model weights

Figure A.5: An example of how amount of results from an encoding analysis can be affected by the
amount of data used for model fitting. This example reflects data from 22 older normal hearing
listeners listening selectively to one of two competing speech streams. The encoding models were
trained and evaluated per subject and operated on cochleograms of attended speech streams.
EEG responses are here decomposed into one major response component using denoising source
component, (DSS; de Cheveigné and Simon, 2008) trained on ERP data. The DSS extraction filters
were polarity normalized such that the N100 DSS component evoked by the repetitive tones
always was negative. The encoding accuracy represents the ability of the encoders to predict
a held-out test set. The Ridge parameter was tuned on a validation set. Once adequate Ridge
parameters were chosen, an ”optimal” Ridge model was fit to the entire training and validation
set. Errorbars represent s.e.m. across all 22 subjects. The inlets show grand average encoding
model weights (peak normalized) for models fit to ∼4 min of data and ∼17 min of data. Duration
of training data here also reflects data for DSS filter extraction.
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A.5 Example 5: Influence of filtering on interpretation of

model parameters

It is common practice to temporally filter M/EEG and ECoG data. Filter ringing

can affect the interpretation of encoding model weights, as filtering alters the

time course of the neural data recordings. When filtering neural recordings

prior to fitting encoding models, the encoding model weights may appear to

be smeared out in time. This is illustrated in Figure A.6 for simulated neural

data. Two simulation scenarios are here considered. Scenario 1 simulates a

response, R1(t ), as convolution of a signal, T (t ), with a temporal response func-

tion, TRF1,target. Similarly, scenario 2 simulates a response, R2(t ), as convolution

of a signal, T (t ), with a temporal response function, TRF2,target. In both sim-

ulations, the responses are low-pass filtered with an FIR filter with a cut-off

frequency of 15 Hz, and subsequently shifted to adjust for filter delay. The left

and the right panel in Fig. A.6 show encoding filters recovered with Ridge regres-

sion in both simulation scenarios. From these panels, it can be seen that the

recovered TRFs are smeared out in time, since the encoding models estimate

the convolution of the ”true” TRFs with the impulse response of the low-pass

filters (see dashed lines in Fig. A.6; the data has here also been shifted to adjust

for filter delay). However, the filter distortions are less pronounced in Scenario

1, as TRF1,target has a bandpass characteristic with a low-frequency passband.

This simulation demonstrates that filtering may affect interpretation of both

latencies and peaks of estimated encoding filters.

Scenario 1

TRF
1,target

TRF
1,est

TRF
1,target

 * IR
LP,filt

Scenario 2

TRF
2,target

TRF
2,est

TRF
2,target

 * IR
LP,filt

Figure A.6: The effect of filtering on encoding model parameters. Two simulation scenarios are
here considered. Scenario 1 simulates a response, R1(t ), as convolution of a signal, T (t ), with
TRF1,target. Scenario 2 simulates a response, R2(t ), as convolution of a signal, T (t ), with TRF2,target.
In both simulations, the responses are low-pass filtered with an FIR filter with a cut-off frequency
of 15 Hz, and subsequently shifted to adjust for filter delay. The two panels compares the actual
TRFs with the estimated TRFs. See text for more details.
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A.6 Example 6: Model interpretation in scenarios where

responses exhibit feature selectivity

A neural response, R (t ), may simultaneously represent information about dif-

ferent sound features (Di Liberto et al., 2015; Lescroart et al., 2015; Naselaris

et al., 2011). Both encoding and decoding models can be used to investigte

whether a neural response exhibits feature selectivity. This question can be

addressed with encoding models by fitting separate models on different feature

types and evaluating how much of the explainable variance in the neural data

that can be predicted uniquely by each feature type (see Heer et al., 2017; Le-

scroart et al., 2015). Similar model comparisons can also be performed with

decoding models (Naselaris et al., 2011), but such model comparisons can be

more difficult to interpret when the different stimulus features have different

statistical properties.

Figure A.7 illustrates how encoding models can be used to determine the

fraction of variance in a neural response that is uniquely explained by differ-

ent feature spaces (Heer et al., 2017; Lescroart et al., 2015). Three different

simulation scenarios are here considered. Scenario 1 (Fig. A.7a) simulates a

response as a convolution between a feature E and a temporal response func-

tion TRFE plus another feature O convoled with a temporal response function

TRFO . The O feature responds systematically to onsets in E . Scenario 2 (Fig.

A.7b) simulates a response as a convolution between a feature E and a temporal

response function TRFE . Finally, Scenario 3 (Fig. A.7c) simulates a response as

a convolution between a feature O and a temporal response function TRFO .

In all three scenarios it is possible to estimate the unique contribution of the

features, O and E , to variance in the response. To do this, separate encoding

models are fit to the two features, E and O , and a joint encoding model is fit to

the two features concatenated along feature dimension. How much variance

in the data each of these three models explain can be estimated by computing

Pearson’s correlation coefficient, r , between model predictions and target data

(over a test set), and squaring the correlation coefficient r 2 (David and Gallant,

2005; Heer et al., 2017; Lescroart et al., 2015). Assume that a joint model based

on a union of two feature spaces, E ∪O , explains some variance in the data,

r 2
E∪O (Lescroart et al., 2015). It is now possible to estimate the unique variance

explained by each model, r 2
E = r 2

E∪O − r 2
O , and the variance shared between the

two models r 2
E∩O = r 2

E + r 2
O − r 2

E∪O (Heer et al., 2017; Lescroart et al., 2015). In
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Figure A.7: Using encoding models to estimate how much variance in simulated neural responses
that is uniquely explained by different feature spaces. Three simulation scenarios are here
considered. In scenario 1, the neural response is simulated as convolution between E and a
temporal response function, TRFE plus O convolved with a temporal response function TRFO .
In scenario 2, the neural response is simulated as convolution between E and TRFE . In scenario
3, the neural response is simulated as convolution between O and TRFO . In all of the three
simulation scenarios, it is possible to estimate the unique contribution of the two features, E and
O to variance in the simulated response (bottom left panels in a, b and c). However, if either of
the two features are not included in the analysis, it can affect interpretation of modelling results.
For instance, if one only considers O in scenario 1 or 2, then TRFO ,est deviates from TRFO ,target).
Similar effects occur in scenario 1 and 3, when only considering E .

this way, it is possible to assess whether the different models account for unique

or shared variance in the simulated response. However, the accuracy of the

estimates may be affected by sampling noise (Heer et al., 2017).

It can be seen in Fig. A.7a that both individual models explain some unique

variance (r 2
E and r 2

O ) in the simulated neural responses. However, a substantial

fraction of variance in the neural data is shared between the two models. Since
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the true stimulus-response relation is known, the encoding filters recovered with

the different encoding models can be compared to the true temporal response

functions, TRFE and TRFO . As expected, the joint model E ∪O show complete

recovery of TRFE and TRFO (Fig. A.7a, bottom), as it can account for regularities

across features to predict the response (see e.g. Example 1). Conversely, when

fitting individual models, the estimated temporal response functions differ

from TRFE and TRFO (Fig. A.7a top row), as they do not account for the shared

variance explained by both models.

In Fig. A.7b and Fig. A.7c the variance partitioning analyses identify that

only one of the two features uniquely contribute to variance in the responses,

and that a fraction of the explained variance is shared between model features.

Again, in these simulations the joint models show complete recovery of TRFE

and TRFO . In both scenarios, when the response does not contain a certain

feature, the individual models may attain nonzero weights unlike their targets.

This could in both cases lead to wrong conclusions about what attributes in the

stimulus features that drive the response. Fitting an individual model and not

rigorously assessing the fraction of variance explained by other relevant models,

can in other words affect interpretation of models weights (top panels, in Fig.

A.7a,b,c) and interpretation of model accuracies (bottom right panels, in Fig.

A.7a,b,c).
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The end.



To be continued. . .



This thesis investigated how selective attention affects single-trial electroencephalog-

raphy (EEG) responses to speech. Work from EEG studies in normal-hearing (NH)

and hearing-impaired (HI) listeners is presented. It is explored how different task

demands and listening scenarios affect EEG responses to speech. It is shown

that the auditory attentional selection of NH and HI listeners can be decoded from

EEG data with reasonably high classification accuracies in different listening en-

vironments. Overall, the work presented in this thesis suggests that EEG-based

attention decoding may have relevance for future brain-computer interface systems.
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