8 research outputs found

    Hyperspectral Image Classification Using a Spectral-Spatial Sparse Coding Model

    Get PDF
    We present a sparse coding based spectral-spatial classification model for hyperspectral image (HSI) datasets. The proposed method consists of an efficient sparse coding method in which the l1/lq regularized multi-class logistic regression technique was utilized to achieve a compact representation of hyperspectral image pixels for land cover classification. We applied the proposed algorithm to a HSI dataset collected at the Kennedy Space Center and compared our algorithm to a recently proposed method, Gaussian process maximum likelihood (GP-ML) classifier. Experimental results show that the proposed method can achieve significantly better performances than the GP-ML classifier when training data is limited with a compact pixel representation, leading to more efficient HSI classification systems

    Detection of Seagrass Scars Using Sparse Coding and Morphological Filter

    Get PDF
    We present a two-step algorithm for the detection of seafloor propeller seagrass scars in shallow water using panchromatic images. The first step is to classify image pixels into scar and non-scar categories based on a sparse coding algorithm. The first step produces an initial scar map in which false positive scar pixels may be present. In the second step, local orientation of each detected scar pixel is computed using the morphological directional profile, which is defined as outputs of a directional filter with a varying orientation parameter. The profile is then utilized to eliminate false positives and generate the final scar detection map. We applied the algorithm to a panchromatic image captured at the Deckle Beach, Florida using the WorldView2 orbiting satellite. Our results show that the proposed method can achieve \u3e90% accuracy on the detection of seagrass scars

    Sparse Coding Based Feature Representation Method for Remote Sensing Images

    Get PDF
    In this dissertation, we study sparse coding based feature representation method for the classification of multispectral and hyperspectral images (HSI). The existing feature representation systems based on the sparse signal model are computationally expensive, requiring to solve a convex optimization problem to learn a dictionary. A sparse coding feature representation framework for the classification of HSI is presented that alleviates the complexity of sparse coding through sub-band construction, dictionary learning, and encoding steps. In the framework, we construct the dictionary based upon the extracted sub-bands from the spectral representation of a pixel. In the encoding step, we utilize a soft threshold function to obtain sparse feature representations for HSI. Experimental results showed that a randomly selected dictionary could be as effective as a dictionary learned from optimization. The new representation usually has a very high dimensionality requiring a lot of computational resources. In addition, the spatial information of the HSI data has not been included in the representation. Thus, we modify the framework by incorporating the spatial information of the HSI pixels and reducing the dimension of the new sparse representations. The enhanced model, called sparse coding based dense feature representation (SC-DFR), is integrated with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) classifiers to discriminate different types of land cover. We evaluated the proposed algorithm on three well known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit (SOMP) and image fusion and recursive filtering (IFRF). The results from the experiments showed that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification. To further verify the power of the new feature representation method, we applied it to a pan-sharpened image to detect seafloor scars in shallow waters. Propeller scars are formed when boat propellers strike and break apart seagrass beds, resulting in habitat loss. We developed a robust identification system by incorporating morphological filters to detect and map the scars. Our results showed that the proposed method can be implemented on a regular basis to monitor changes in habitat characteristics of coastal waters

    Manifold Learning Approaches to Compressing Latent Spaces of Unsupervised Feature Hierarchies

    Get PDF
    Field robots encounter dynamic unstructured environments containing a vast array of unique objects. In order to make sense of the world in which they are placed, they collect large quantities of unlabelled data with a variety of sensors. Producing robust and reliable applications depends entirely on the ability of the robot to understand the unlabelled data it obtains. Deep Learning techniques have had a high level of success in learning powerful unsupervised representations for a variety of discriminative and generative models. Applying these techniques to problems encountered in field robotics remains a challenging endeavour. Modern Deep Learning methods are typically trained with a substantial labelled dataset, while datasets produced in a field robotics context contain limited labelled training data. The primary motivation for this thesis stems from the problem of applying large scale Deep Learning models to field robotics datasets that are label poor. While the lack of labelled ground truth data drives the desire for unsupervised methods, the need for improving the model scaling is driven by two factors, performance and computational requirements. When utilising unsupervised layer outputs as representations for classification, the classification performance increases with layer size. Scaling up models with multiple large layers of features is problematic, as the sizes of subsequent hidden layers scales with the size of the previous layer. This quadratic scaling, and the associated time required to train such networks has prevented adoption of large Deep Learning models beyond cluster computing. The contributions in this thesis are developed from the observation that parameters or filter el- ements learnt in Deep Learning systems are typically highly structured, and contain related ele- ments. Firstly, the structure of unsupervised filters is utilised to construct a mapping from the high dimensional filter space to a low dimensional manifold. This creates a significantly smaller repre- sentation for subsequent feature learning. This mapping, and its effect on the resulting encodings, highlights the need for the ability to learn highly overcomplete sets of convolutional features. Driven by this need, the unsupervised pretraining of Deep Convolutional Networks is developed to include a number of modern training and regularisation methods. These pretrained models are then used to provide initialisations for supervised convolutional models trained on low quantities of labelled data. By utilising pretraining, a significant increase in classification performance on a number of publicly available datasets is achieved. In order to apply these techniques to outdoor 3D Laser Illuminated Detection And Ranging data, we develop a set of resampling techniques to provide uniform input to Deep Learning models. The features learnt in these systems outperform the high effort hand engineered features developed specifically for 3D data. The representation of a given signal is then reinterpreted as a combination of modes that exist on the learnt low dimensional filter manifold. From this, we develop an encoding technique that allows the high dimensional layer output to be represented as a combination of low dimensional components. This allows the growth of subsequent layers to only be dependent on the intrinsic dimensionality of the filter manifold and not the number of elements contained in the previous layer. Finally, the resulting unsupervised convolutional model, the encoding frameworks and the em- bedding methodology are used to produce a new unsupervised learning stratergy that is able to encode images in terms of overcomplete filter spaces, without producing an explosion in the size of the intermediate parameter spaces. This model produces classification results on par with state of the art models, yet requires significantly less computational resources and is suitable for use in the constrained computation environment of a field robot

    An Unsupervised Approach to Modelling Visual Data

    Get PDF
    For very large visual datasets, producing expert ground-truth data for training supervised algorithms can represent a substantial human effort. In these situations there is scope for the use of unsupervised approaches that can model collections of images and automatically summarise their content. The primary motivation for this thesis comes from the problem of labelling large visual datasets of the seafloor obtained by an Autonomous Underwater Vehicle (AUV) for ecological analysis. It is expensive to label this data, as taxonomical experts for the specific region are required, whereas automatically generated summaries can be used to focus the efforts of experts, and inform decisions on additional sampling. The contributions in this thesis arise from modelling this visual data in entirely unsupervised ways to obtain comprehensive visual summaries. Firstly, popular unsupervised image feature learning approaches are adapted to work with large datasets and unsupervised clustering algorithms. Next, using Bayesian models the performance of rudimentary scene clustering is boosted by sharing clusters between multiple related datasets, such as regular photo albums or AUV surveys. These Bayesian scene clustering models are extended to simultaneously cluster sub-image segments to form unsupervised notions of “objects” within scenes. The frequency distribution of these objects within scenes is used as the scene descriptor for simultaneous scene clustering. Finally, this simultaneous clustering model is extended to make use of whole image descriptors, which encode rudimentary spatial information, as well as object frequency distributions to describe scenes. This is achieved by unifying the previously presented Bayesian clustering models, and in so doing rectifies some of their weaknesses and limitations. Hence, the final contribution of this thesis is a practical unsupervised algorithm for modelling images from the super-pixel to album levels, and is applicable to large datasets
    corecore