7 research outputs found

    Dynamic Event-Triggered Consensus of Multi-agent Systems on Matrix-weighted Networks

    Full text link
    This paper examines event-triggered consensus of multi-agent systems on matrix-weighted networks, where the interdependencies among higher-dimensional states of neighboring agents are characterized by matrix-weighted edges in the network. Specifically, a distributed dynamic event-triggered coordination strategy is proposed for this category of generalized networks, in which an auxiliary system is employed for each agent to dynamically adjust the trigger threshold, which plays an essential role in guaranteeing that the triggering time sequence does not exhibit Zeno behavior. Distributed event-triggered control protocols are proposed to guarantee leaderless and leader-follower consensus for multi-agent systems on matrix-weighted networks, respectively. It is shown that that the spectral properties of matrix-valued weights are crucial in event-triggered mechanism design for matrix-weighted networks. Finally, simulation examples are provided to demonstrate the theoretical results

    Quantization effects and convergence properties of rigid formation control systems with quantized distance measurements

    Get PDF
    In this paper, we discuss quantization effects in rigid formation control systems when target formations are described by inter-agent distances. Because of practical sensing and measurement constraints, we consider in this paper distance measurements in their quantized forms. We show that under gradient-based formation control, in the case of uniform quantization, the distance errors converge locally to a bounded set whose size depends on the quantization error, while in the case of logarithmic quantization, all distance errors converge locally to zero. A special quantizer involving the signum function is then considered with which all agents can only measure coarse distances in terms of binary information. In this case, the formation converges locally to a target formation within a finite time. Lastly, we discuss the effect of asymmetric uniform quantization on rigid formation control.Comment: 29 pages, International Journal of Robust and Nonlinear Control 201

    Dimensional-invariance principles in coupled dynamical systems : A unified analysis and applications

    No full text
    In this paper we study coupled dynamical systems and investigate dimension properties of the subspace spanned by solutions of each individual system. Relevant problems on collinear dynamical systems and their variations are discussed recently by Montenbruck et. al. in [1], while in this paper we aim to provide a unified analysis to derive the dimensional-invariance principles for networked coupled systems, and to generalize the invariance principles for networked systems with more general forms of coupling terms. To be specific, we consider two types of coupled systems, one with scalar couplings and the other with matrix couplings. Via the rank-preserving flow theory, we show that any scalar-coupled dynamical system (with constant, time-varying or state-dependent couplings) possesses the dimensional-invariance principles, in that the dimension of the subspace spanned by the individual systems' solutions remains invariant. For coupled dynamical systems with matrix coefficients/couplings, necessary and sufficient conditions (for constant, time-varying and state-dependent couplings) are given to characterize dimensional-invariance principles. The proofs via a rank-preserving matrix flow theory in this paper simplify the analysis in [1], and we also extend the invariance principles to the cases of time-varying couplings and statedependent couplings. Furthermore, subspace-preserving property and signature-preserving flows are also developed for coupled networked systems with particular coupling terms. These invariance principles provide insightful characterizations to analyze transient behaviors and solution evolutions for a large family of coupled systems, such as multi-agent consensus dynamics, distributed coordination systems, formation control systems, among others

    Dimensional-Invariance Principles in Coupled Dynamical Systems: A Unified Analysis and Applications

    No full text
    corecore