3,866 research outputs found

    Dimension Boundary between Finite and Infinite Random Matrices in Cognitive Radio Networks

    Get PDF

    Exact distributions of finite random matrices and their applications to spectrum sensing

    Get PDF
    The exact and simple distributions of finite random matrix theory (FRMT) are critically important for cognitive radio networks (CRNs). In this paper, we unify some existing distributions of the FRMT with the proposed coefficient matrices (vectors) and represent the distributions with the coefficient-based formulations. A coefficient reuse mechanism is studied, i.e., the same coefficient matrices (vectors) can be exploited to formulate different distributions. For instance, the same coefficient matrices can be used by the largest eigenvalue (LE) and the scaled largest eigenvalue (SLE); the same coefficient vectors can be used by the smallest eigenvalue (SE) and the Demmel condition number (DCN). A new and simple cumulative distribution function (CDF) of the DCN is also deduced. In particular, the dimension boundary between the infinite random matrix theory (IRMT) and the FRMT is initially defined. The dimension boundary provides a theoretical way to divide random matrices into infinite random matrices and finite random matrices. The FRMT-based spectrum sensing (SS) schemes are studied for CRNs. The SLE-based scheme can be considered as an asymptotically-optimal SS scheme when the dimension K is larger than two. Moreover, the standard condition number (SCN)-based scheme achieves the same sensing performance as the SLE-based scheme for dual covariance matrix [Formula: see text]. The simulation results verify that the coefficient-based distributions can fit the empirical results very well, and the FRMT-based schemes outperform the IRMT-based schemes and the conventional SS schemes

    Energy-aware Sparse Sensing of Spatial-temporally Correlated Random Fields

    Get PDF
    This dissertation focuses on the development of theories and practices of energy aware sparse sensing schemes of random fields that are correlated in the space and/or time domains. The objective of sparse sensing is to reduce the number of sensing samples in the space and/or time domains, thus reduce the energy consumption and complexity of the sensing system. Both centralized and decentralized sensing schemes are considered in this dissertation. Firstly we study the problem of energy efficient Level set estimation (LSE) of random fields correlated in time and/or space under a total power constraint. We consider uniform sampling schemes of a sensing system with a single sensor and a linear sensor network with sensors distributed uniformly on a line where sensors employ a fixed sampling rate to minimize the LSE error probability in the long term. The exact analytical cost functions and their respective upper bounds of these sampling schemes are developed by using an optimum thresholding-based LSE algorithm. The design parameters of these sampling schemes are optimized by minimizing their respective cost functions. With the analytical results, we can identify the optimum sampling period and/or node distance that can minimize the LSE error probability. Secondly we propose active sparse sensing schemes with LSE of a spatial-temporally correlated random field by using a limited number of spatially distributed sensors. In these schemes a central controller is designed to dynamically select a limited number of sensing locations according to the information revealed from past measurements,and the objective is to minimize the expected level set estimation error.The expected estimation error probability is explicitly expressed as a function of the selected sensing locations, and the results are used to formulate the optimal sensing location selection problem as a combinatorial problem. Two low complexity greedy algorithms are developed by using analytical upper bounds of the expected estimation error probability. Lastly we study the distributed estimations of a spatially correlated random field with decentralized wireless sensor networks (WSNs). We propose a distributed iterative estimation algorithm that defines the procedures for both information propagation and local estimation in each iteration. The key parameters of the algorithm, including an edge weight matrix and a sample weight matrix, are designed by following the asymptotically optimum criteria. It is shown that the asymptotically optimum performance can be achieved by distributively projecting the measurement samples into a subspace related to the covariance matrices of data and noise samples

    Cellular Interference Alignment

    Full text link
    Interference alignment promises that, in Gaussian interference channels, each link can support half of a degree of freedom (DoF) per pair of transmit-receive antennas. However, in general, this result requires to precode the data bearing signals over a signal space of asymptotically large diversity, e.g., over an infinite number of dimensions for time-frequency varying fading channels, or over an infinite number of rationally independent signal levels, in the case of time-frequency invariant channels. In this work we consider a wireless cellular system scenario where the promised optimal DoFs are achieved with linear precoding in one-shot (i.e., over a single time-frequency slot). We focus on the uplink of a symmetric cellular system, where each cell is split into three sectors with orthogonal intra-sector multiple access. In our model, interference is "local", i.e., it is due to transmitters in neighboring cells only. We consider a message-passing backhaul network architecture, in which nearby sectors can exchange already decoded messages and propose an alignment solution that can achieve the optimal DoFs. To avoid signaling schemes relying on the strength of interference, we further introduce the notion of \emph{topologically robust} schemes, which are able to guarantee a minimum rate (or DoFs) irrespectively of the strength of the interfering links. Towards this end, we design an alignment scheme which is topologically robust and still achieves the same optimum DoFs

    Percolation and Connectivity in the Intrinsically Secure Communications Graph

    Get PDF
    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper aims to characterize the global properties of the iS-graph in terms of: (i) percolation on the infinite plane, and (ii) full connectivity on a finite region. First, for the Poisson iS-graph defined on the infinite plane, the existence of a phase transition is proven, whereby an unbounded component of connected nodes suddenly arises as the density of legitimate nodes is increased. This shows that long-range secure communication is still possible in the presence of eavesdroppers. Second, full connectivity on a finite region of the Poisson iS-graph is considered. The exact asymptotic behavior of full connectivity in the limit of a large density of legitimate nodes is characterized. Then, simple, explicit expressions are derived in order to closely approximate the probability of full connectivity for a finite density of legitimate nodes. The results help clarify how the presence of eavesdroppers can compromise long-range secure communication.Comment: Submitted for journal publicatio

    Temporal connectivity in finite networks with non-uniform measures

    Get PDF
    Soft Random Geometric Graphs (SRGGs) have been widely applied to various models including those of wireless sensor, communication, social and neural networks. SRGGs are constructed by randomly placing nodes in some space and making pairwise links probabilistically using a connection function that is system specific and usually decays with distance. In this paper we focus on the application of SRGGs to wireless communication networks where information is relayed in a multi hop fashion, although the analysis is more general and can be applied elsewhere by using different distributions of nodes and/or connection functions. We adopt a general non-uniform density which can model the stationary distribution of different mobility models, with the interesting case being when the density goes to zero along the boundaries. The global connectivity properties of these non-uniform networks are likely to be determined by highly isolated nodes, where isolation can be caused by the spatial distribution or the local geometry (boundaries). We extend the analysis to temporal-spatial networks where we fix the underlying non-uniform distribution of points and the dynamics are caused by the temporal variations in the link set, and explore the probability a node near the corner is isolated at time TT. This work allows for insight into how non-uniformity (caused by mobility) and boundaries impact the connectivity features of temporal-spatial networks. We provide a simple method for approximating these probabilities for a range of different connection functions and verify them against simulations. Boundary nodes are numerically shown to dominate the connectivity properties of these finite networks with non-uniform measure.Comment: 13 Pages - 4 figure
    • …
    corecore