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Abstract—The dimension boundary between finite random
matrices and infinite random matrices is originally defined in this
paper. The proposed boundary provides a theoretical approach
to classify random matrices based on their dimensions. Two
methods are proposed to determine the dimension boundary. One
is based on the eigenvalue distribution and the other is based on
the eigenvalue interval. In particular, a boundary-based threshold
generation scheme in cognitive radio networks (CRNs) is studied.
The theoretical analysis and numerical results verify the proposed
dimension boundary and the corresponding boundary decision
methods.

Index Terms—Finite random matrix theory, infinite random
matrix theory, dimension boundary, cognitive radio networks.

I. INTRODUCTION

Random matrix theory (RMT) has found several applica-
tions in CRNs [1], [2] and wireless communication systems
[3], [4]. According to the size of the dimension, random matri-
ces can be generally divided into two categories: finite random
matrices with finite dimension and infinite random matrices
with infinite dimension. Accordingly, the finite random matrix
theory (FRMT) and infinite random matrix theory (IRMT) can
be applied to analyze the corresponding random matrices.

For FRMT, exact and analytical results can be used to
evaluate the characteristics of finite random matrices. The
distributions of eigenvalues [5], [6], standard condition number
(SCN) [7], and demmel condition number (DCN) [8] can be
generated with the exact and analytical formulations under the
condition that the dimension of random matrix is not very
large. However, for IRMT, only asymptotical and limiting
results can be achieved when the dimension K and the
degree of freedom (DoF) N go to infinity, i.e., K,N → ∞.
In the paradigm of the IRMT, lots of significant results
including the Marchenko-Pastur (MP) law [9] and Tracy-
Widom (TW) law [10] can be used to evaluate the theoretical
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eigenvalue distribution (TED). All the existing TEDs both
in the FRMT and IRMT can be verified by the empirical
eigenvalue distributions (EEDs). A challenging problem is how
to classify a specific random matrix based on its dimension
and which theory (FRMT or IRMT) is more appropriate to
be explored. Therefore, the dimension boundary should be
defined to determine a random matrix with the dimension
K and the DoF N . When the dimension is larger than the
boundary, the random matrix can be considered as infinite
and the IRMT can be used. Otherwise, such a matrix is finite
and the FRMT should be useable. In particular, based on the
extreme eigenvalue distributions of the IRMT [1] and the SCN
distributions of the FRMT [2], [7], the cooperative spectrum
sensing (CSS) schemes have been studied in CRNs.

The eigenvalue distribution and eigenvalue interval, as two
main eigenvalue characteristics, can be used to determine the
dimension boundary. For the eigenvalue distribution, the TEDs
of the FRMT and IRMT should follow the corresponding
EEDs and the convergence between TED and EED can be used
to define the dimension boundary. Moreover, the eigenvalue
interval between the largest and smallest eigenvalues can
also be utilized to calculate the dimension boundary. For
the IRMT, there are no eigenvalues outside the eigenvalue
interval of the random matrices with large dimensions [11]
and such eigenvalue interval can be statistically determined
[12]. The MP law can be used to calculate the TED and the
theoretical eigenvalue interval (TEI) in the IRMT. The EED
and the empirical eigenvalue interval (EEI) are determined in
a numerical way.

The main contributions of this paper are summarized as
follows. First, the dimension boundary between FRMT and
IRMT is presented to theoretically classify random matrices
into finite and infinite. To the best of our knowledge, the
dimension boundary is initially defined in the RMT. The
boundary provides an efficient way for CRNs to properly
select the FRMT or IRMT, based on the dimension of sample
matrices. A boundary-based threshold generation scheme is
illustrated to generate exact theoretical sensing thresholds,
leading to superior sensing performance. Moreover, the dimen-
sion boundary can potentially point out which theory (FRMT
or IRMT) is more suitable for other RMT-based sensing
schemes. Second, two boundary decision methods based on the
eigenvalue distribution and eigenvalue interval are designed.
The dimension step and dimension threshold are also provided
as two key parameters.
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II. SYSTEM MODEL AND MATHEMATICAL PRELIMINARIES

The CSS model in CRNs is considered, i.e., the fusion
center (FC) senses the target frequency bands by checking PU
signal samples, which are gathered from distributed secondary
users (SUs). Assuming the number of SUs is K and the
number of PU signal samples per SU is N , a K ×N sample
matrix X and the covariance matrix M = XXH can be
generated at the FC. The CSS scheme based on the extreme
eigenvalues [1] or the SCN [2] can be designed. According to
hypothesis test, the sensing performance can be evaluated by
the probability of detection, Pd, which can be expressed as

Pd = Pr{T ≥ ρ|H1} (1)

where T denotes the test statistic, ρ is a given threshold, Pr{·}
is the probability operation, and the condition H1 denotes the
presence of PU signal.

The K×K covariance matrix M (M ∼ WK(V, N)) can be
regarded as a central and complex Wishart matrix with the DoF
N and the matrix V if the columns of X are zero mean and
independent complex Gaussian vectors. The joint probability
density function (PDF) of the K ordered eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λK of M is expressed as [3], [5]

fΛ (λ1, ..., λK) =
K∏

i=1

λN−K
i exp (−λi)

(K − i)!(N − i)!

∏
i<j

(λj − λi)
2 (2)

where Λ = [λ1λ2 · · ·λK ] denotes the ordered eigenvalue set.
For finite Wishart matrices, the exact eigenvalue distributions
can be achieved based on the joint PDF of all K ordered
eigenvalues. However, when the dimension of M becomes
very large, the exact eigenvalue distributions cannot be cal-
culated due to high computational complexity. In this case,
the TED (PDF) of M is given by the MP law [9]

fλ (x) =
(

1 − 1
γ

)+

δ(x) +

√
(x − α)+(β − x)+

2πγx
(3)

where K,N → ∞, γ = K/N denotes the dimension factor,
α =

(
1 −√

γ
)2

, β =
(
1 +

√
γ
)2

, and (x)+ = max (x, 0).
The covariance of each entry of X is 1/N and the eigenvalue
λ is located in the interval [α, β].

III. DIMENSION BOUNDARYAND ITS APPLICATION TO
THRESHOLD GENERATION

For a central and complex Wishart matrix M with dimen-
sion K and DoF N (N ≥ K), let Kb denote the dimension
boundary. When K is larger than Kb, the random matrix
M can be considered as infinite and the IRMT is therefore
applicable. Otherwise, M is finite and the FRMT can be
used. If the dimension of the Wishart matrix is infinite, i.e.,
K,N → ∞ and K/N = γ, the TED converges to the
corresponding EED and all the eigenvalues are located in the
TEI with high probability [11], [12]. In this paper, we use the
convergence between TED (TEI) and EED (EEI) to determine
the dimension boundary.

A. Eigenvalue distribution based dimension boundary

For a K ×K Wishart matrix M with the DoF N , N ≥ K,
the dimension boundary Kb is defined as

Kb =min

{
argmin

K

[∑
λ

(|Dt(K,N ;λ)−De(K,N ;λ)|)≤Φd

]}
(4)

s.t. 0 < K ≤ N < ∞ (5)
K/N = γ (6)
λ ∈ [a, b] (7)

where Dt(K,N ;λ) is the TED, which can be implemented by
the MP law in (3) and De(K,N ; λ) is the EED, which can be
evaluated numerically. The given factor Φd is used to evaluate
the convergence between the TED and EED. The lower and
upper bounds of λ are denoted by a and b, respectively. The
eigenvalue interval is [a, b], which is usually larger than the
TEI determined by the MP law [α, β], i.e., a ≤ α and b ≥ β.

The sum of the distances between two distributions for J
(J ≤ K) eigenvalues can be calculated by

Ω(K,N ;ΛJ) =
J∑

j=1

|Dt(K,N ; λj) − De(K,N ;λj)| (8)

where ΛJ denotes a J-length eigenvalue set taken from the
EED. For a fixed J , Ω(K,N ;ΛJ) decreases with the increase
of K and N . The similarity between the TED and EED is
calibrated as

Γ (K, γ; Θd;ΛJ) =
Ω (K + Θd, b(K + Θd) /γc;ΛJ)

Ω (K,K/γ;ΛJ)
(9)

where Θd is an integer denoting the given dimension step, and
b·c denotes the floor function. The dimension boundary Kb can
be determined when the following condition is satisfied

Γ (Kb, γ; Θd;ΛJ) ≥ φd (10)

where φd denotes a given dimension threshold. The dimension
step Θd can be determined by the convergence rate of the
EED and the dimension threshold φd ∈ (0, 1) is given in an
empirical way. Compared with the given factor Φd in (4), the
dimension threshold φd is used to numerically evaluate the
similarity between the EED and TED.

The boundary decision method based on the eigenvalue
distribution is summarized as follows:

Algorithm 1 : Generating the dimension boundary Kb.

1: Given Θd and γ, initialize K = 2, N = bK/γc;
2: Generate Mi ∼ WK(V, N), i = 1, · · · , I;
3: Calculate De(K,N ; λ), Dt(K,N ;λ), and Ω(K,N ;ΛJ);
4: Let K = K + Θd, N = bK/γc, generate M

′

i ∼
WK(V, N), i = 1, · · · , I;
5: Calculate D

′

e(K,N ; λ), D
′

t(K,N ; λ), and
Ω

′
(K,N ;ΛJ);

6: If Γ (K − Θd, γ; Θd;ΛJ) < φd, Ω = Ω
′
, goto 4;

7: Else Kb = K − Θd, return Kb.
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B. Eigenvalue interval based dimension boundary

For the Wishart matrix M with sufficiently large dimension
K and DoF N , there are no eigenvalues outside the TEI [11].
Moreover, the probability that all eigenvalues of M are located
in the EEI is relatively high [12]. Therefore, the EEI and TEI
tend to be consistent under the condition that K,N → ∞ and
K/N = γ. Based on the consistence between the TEI and
EEI, the dimension boundary is defined as

Kb =min
{
argmin

K
[|It(K,N ;Λ)−Ie(K,N ;Λ)| ≤ Φi]

}
(11)

s.t. 0 < K ≤ N < ∞ (12)
K/N = γ (13)

where It(K,N ;Λ) and Ie(K,N ;Λ) denote the TEI and EEI,
respectively. The given factor Φi denotes the convergence
between two eigenvalue intervals. The TEI can be taken from
the MP law [α, β], i.e., It(K,N ;Λ) = β − α. The EEI can
be calculated with the average distance between the largest
eigenvalue and smallest eigenvalue, i.e.,

Ie(K,N ;Λ) = λ̄max − λ̄min (14)

where λ̄max and λ̄min denote the average largest eigenvalue
and average smallest eigenvalue, respectively. For a specific
Wishart matrix, the distance between two eigenvalue intervals
is given by

Ψ(K,N ;Λ) = |It(K,N ;Λ) − Ie(K,N ;Λ)| (15)

where Ψ decreases with the increase of K and N due to
the convergence between the TEI and EEI. Similar to the
eigenvalue distribution based scheme, for the given dimension
step Θi, the difference between two interval distances is
calculated by

∆(K, γ; Θi;Λ)=Ψ(K,N ;Λ)−Ψ(K+Θi,b(K+Θi)/γc;Λ) .
(16)

The dimension boundary Kb can be determined when the
following condition is satisfied

∆(Kb, γ; Θi;Λ) ≤ φi (17)

where φi is the dimension threshold for the eigenvalue interval
based scheme. The dimension boundary decision method
based on the eigenvalue interval can also be designed similar
to the eigenvalue distribution based scheme.

C. Boundary-based threshold generation

The sensing performance of RMT-based CSS system is
evaluated by Pd shown in (1), in which the threshold ρ should
be generated in advance. For a given probability of false alarm,
Pf , the threshold can be calculated by

ρ = F−1
T (1 − Pf ) (18)

where F−1
T (·) denotes the inverse CDF of the test statistic

T . The accurate threshold is essentially required for the CSS
system to achieve high sensing performance. It should be noted
that the CDF of the proposed test statistic T can be achieved in
an empirical way if there are no the corresponding theoretical
expressions. For the RMT-based CSS system in CRNs, the test

statistic T is formulated with the eigenvalue characteristics of
the covariance matrix M, e.g., largest eigenvalue [1] and SCN
[2]. Therefore, the proper distributions (especially CDFs) of
the eigenvalue characteristics should be selected to calculate
the threshold based on the proposed dimension boundary.
If the dimension of M is larger than Kb, the asymptotic
distributions in the IRMT, e.g., the MP-law and the TW-
law, can be selected. Otherwise, the exact distributions in the
FRMT should be selected.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the two proposed boundary decision schemes
are illustrated with numerical results. The dimension boundary
including the dimension step and dimension threshold for the
Wishart matrix is determined. The K×K central and complex
Wishart matrix M with the DoF N and covariance 1/N is used
in simulations. The number of trials I is 10000 and the number
of sample eigenvalues J is 1000. Note that the J sample
eigenvalues are averagely taken from the TEI. The TED is
calculated with the MP-law in (3) and the TEI is determined by
[α, β]. The EED is generated in an empirical way and the EEI
is determined by the averaged distance between the empirical
largest and smallest eigenvalues. According to the convergence
rate of random matrices, we find that both dimension steps
Θd and Θi can be set to 8. For a larger dimension step, the
EED (EEI) will converge to the corresponding TED (TEI)
with a higher convergence rate. However, the fine dimension
boundary cannot be determined. There is a tradeoff between
the convergence rate and the accuracy for different dimension
steps. Based on the convergence between the theoretical and
empirical eigenvalue distributions and intervals, the dimension
thresholds φd and φi are set to 0.7 and 0.1, respectively.
Note that there is a tradeoff between the boundary step and
boundary threshold. A larger boundary can be generated if a
tighter threshold is set.

The dimension boundary of the Wishart matrix based on the
eigenvalue distribution is shown in Fig. 1, in which the sum
of the distribution distance Ω(K,N ;ΛJ) for varying dimen-
sions is indicated. The dimension step Θd and the dimension
threshold φd are set to 8 and 0.7, respectively. The dimension
boundary can be determined as Kb = 18. The corresponding
distribution similarity Γ (K, γ; Θd;ΛJ) is indicated in Fig. 2,
in which we can observe that Γ (10, γ; 8;ΛJ) for varying γ is
less than the given dimension threshold φd = 0.7 and therefore
K = 10 cannot be the dimension boundary.
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Fig. 1: Eigenvalue distribution based dimension boundary.
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Fig. 3: Eigenvalue Interval based dimension boundary.
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Fig. 4: Boundary-based threshold generation with FRMT and
IRMT. T is constructed with the largest eigenvalue.

The distribution similarity improves with the increase of
the dimension K. Then, for K = 18, Γ (18, γ; 8;ΛJ) for all
γ is larger than the given dimension threshold φd, therefore
Kb = 18 is the required dimension boundary. For example,
Γ (10, 0.1; 8;ΛJ) is about 0.68 and Γ (18, 0.1; 8;ΛJ) is 0.83,
which is larger than φd. From the distribution based scheme
shown in Fig. 1 and Fig. 2, we can also observe that for the
Wishart matrix with large dimension, the similarity between
the TED and EED increases. Moreover, the accuracy of the
distribution based scheme can be indicated with Fig. 2.

The dimension boundary method based on the eigenvalue
interval is indicated in Fig. 3. Here, the dimension step Θi is 8
and the dimension threshold φi is 0.1. The dimension factor γ
is set to 0.1, 0.2, and 0.5. Based on K and γ, the corresponding
DoF N and the TEI [α, β] can be generated. The eigenvalue
interval distance Ψ(K,N ;Λ) for varying dimension K with
different dimension factor γ is shown in this figure. We can

observe that with the larger dimension, the distance decreases.
It means that the TEI and EEI converge with the increase of
the matrix dimension. Moreover, when the DoF N increases,
i.e., the smaller γ, the distance decreases. When the difference
∆(K, γ; Θi;Λ) in (16) is less than the given dimension
threshold φi, the dimension boundary is determined. In this
case, the dimension boundary Kb of the Wishart matrix is
still 18. From the numerical results shown in Figs. 1 – 3, we
can find that the dimension boundary can be determined with
the eigenvalue distribution and eigenvalue interval. For both
boundary decision methods, there is a tradeoff between the
dimension step and boundary threshold. We use two methods
shown in (10) and (17) to generate the corresponding bound-
aries. It should be noted that both methods are inherently based
on the convergence between the theoretical eigenvalues and
empirical eigenvalues. Boundary-based threshold generation
schemes of CRNs are shown in Fig. 4, in which the impact
of the correct selection of dimension boundary is evaluated.
If the IRMT or FRMT is properly selected, the consistency
between theoretical thresholds and empirical ones can be
achieved. As shown in Fig. 4(a), the thresholds calculated by
the FRMT can properly fit the empirical thresholds. However,
the thresholds generated by the IRMT cannot fit the empirical
results especially for high Pf . For the infinite matrices shown
in Fig. 4(b), only the IRMT can generate the exact thresholds
and the FRMT cannot formulate the exact distribution due to
high computational complexity. Based on the boundary, the
exact theoretical thresholds can be generated with the IRMT
or FRMT for CRNs, leading to superior sensing performance.
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