665 research outputs found

    Satellite road extraction method based on RFDNet neural network

    Get PDF
    The road network system is the core foundation of a city. Extracting road information from remote sensing images has become an important research direction in the current traffic information industry. The efficient residual factorized convolutional neural network (ERFNet) is a residual convolutional neural network with good application value in the field of biological information, but it has a weak effect on urban road network extraction. To solve this problem, we developed a road network extraction method for remote sensing images by using an improved ERFNet network. First, the design of the network structure is based on an ERFNet; we added the DoubleConv module and increased the number of dilated convolution operations to build the road network extraction model. Second, in the training process, the strategy of dynamically setting the learning rate is adopted and combined with batch normalization and dropout methods to avoid overfitting and enhance the generalization ability of the model. Finally, the morphological filtering method is used to eliminate the image noise, and the ultimate extraction result of the road network is obtained. The experimental results show that the method proposed in this paper has an average F1 score of 93.37% for five test images, which is superior to the ERFNet (91.31%) and U-net (87.34%). The average value of IoU is 77.35%, which is also better than ERFNet (71.08%) and U-net (65.64%)

    DEEP FULLY RESIDUAL CONVOLUTIONAL NEURAL NETWORK FOR SEMANTIC IMAGE SEGMENTATION

    Get PDF
    Department of Computer Science and EngineeringThe goal of semantic image segmentation is to partition the pixels of an image into semantically meaningful parts and classifying those parts according to a predefined label set. Although object recognition models achieved remarkable performance recently and they even surpass human???s ability to recognize objects, but semantic segmentation models are still behind. One of the reason that makes semantic segmentation relatively a hard problem is the image understanding at pixel level by considering global context as oppose to object recognition. One other challenge is transferring the knowledge of an object recognition model for the task of semantic segmentation. In this thesis, we are delineating some of the main challenges we faced approaching semantic image segmentation with machine learning algorithms. Our main focus was how we can use deep learning algorithms for this task since they require the least amount of feature engineering and also it was shown that such models can be applied to large scale datasets and exhibit remarkable performance. More precisely, we worked on a variation of convolutional neural networks (CNN) suitable for the semantic segmentation task. We proposed a model called deep fully residual convolutional networks (DFRCN) to tackle this problem. Utilizing residual learning makes training of deep models feasible which ultimately leads to having a rich powerful visual representation. Our model also benefits from skip-connections which ease the propagation of information from the encoder module to the decoder module. This would enable our model to have less parameters in the decoder module while it also achieves better performance. We also benchmarked the effective variation of the proposed model on a semantic segmentation benchmark. We first make a thorough review of current high-performance models and the problems one might face when trying to replicate such models which mainly arose from the lack of sufficient provided information. Then, we describe our own novel method which we called deep fully residual convolutional network (DFRCN). We showed that our method exhibits state of the art performance on a challenging benchmark for aerial image segmentation.clos

    Segmenting Roads from Aerial Images: A Deep Learning Approach Using Multi-Scale Analysis

    Get PDF
    Road map generation requires frequent map updates due to the irregular infrastructural changes. Updating a manual road map is a lengthy process, whereas using aerial or remote sensing (RS) requires less time for the update. However, road extraction becomes more complex due to the similar texture appearance of building top roofs, shadows, and occlusion due to trees. The occluded roads appear as discontinuous road patch in segmented image of updated maps. In this paper, we propose a deep learning method that uses multi-scale analysis for road feature extraction. The dilated inception module (DI) in the up and down sampling paths of network extracts the local and global texture patterns of the road. Furthermore, we also utilize the pyramid pooling module (PP) which has average and max pooling to study the global contextual information under the shadow regions. In the proposed architecture, first, the road in the aerial images is segmented along with the tiny non-road segments. Next, the post processing, which exploits the geometrical shape features, is utilized for filtering the tiny non-road noises. The performance of proposed network is validated on using the publicly available Massachusetts road data by comparing with the other models available in literature

    Learning a Dilated Residual Network for SAR Image Despeckling

    Full text link
    In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear end-to-end mapping between the noisy and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure. In addition, skip connections and residual learning strategy are added to the despeckling model to maintain the image details and reduce the vanishing gradient problem. Compared with the traditional despeckling methods, the proposed method shows superior performance over the state-of-the-art methods on both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table

    LEDCNet: A Lightweight and Efficient Semantic Segmentation Algorithm Using Dual Context Module for Extracting Ground Objects from UAV Aerial Remote Sensing Images

    Full text link
    Semantic segmentation for extracting ground objects, such as road and house, from UAV remote sensing images by deep learning becomes a more efficient and convenient method than traditional manual segmentation in surveying and mapping field. In recent years, with the deepening of layers and boosting of complexity, the number of parameters in convolution-based semantic segmentation neural networks considerably increases, which is obviously not conducive to the wide application especially in the industry. In order to make the model lightweight and improve the model accuracy, a new lightweight and efficient network for the extraction of ground objects from UAV remote sensing images, named LEDCNet, is proposed. The proposed network adopts an encoder-decoder architecture in which a powerful lightweight backbone network called LDCNet is developed as the encoder. We would extend the LDCNet become a new generation backbone network of lightweight semantic segmentation algorithms. In the decoder part, the dual multi-scale context modules which consist of the ASPP module and the OCR module are designed to capture more context information from feature maps of UAV remote sensing images. Between ASPP and OCR, a FPN module is used to and fuse multi-scale features extracting from ASPP. A private dataset of remote sensing images taken by UAV which contains 2431 training sets, 945 validation sets, and 475 test sets is constructed. The proposed model performs well on this dataset, with only 1.4M parameters and 5.48G FLOPs, achieving an mIoU of 71.12%. The more extensive experiments on the public LoveDA dataset and CITY-OSM dataset to further verify the effectiveness of the proposed model with excellent results on mIoU of 65.27% and 74.39%, respectively. All the experimental results show the proposed model can not only lighten the network with few parameters but also improve the segmentation performance.Comment: 11 page
    corecore