5 research outputs found

    On the pathwidth of almost semicomplete digraphs

    Full text link
    We call a digraph {\em hh-semicomplete} if each vertex of the digraph has at most hh non-neighbors, where a non-neighbor of a vertex vv is a vertex u≠vu \neq v such that there is no edge between uu and vv in either direction. This notion generalizes that of semicomplete digraphs which are 00-semicomplete and tournaments which are semicomplete and have no anti-parallel pairs of edges. Our results in this paper are as follows. (1) We give an algorithm which, given an hh-semicomplete digraph GG on nn vertices and a positive integer kk, in (h+2k+1)2knO(1)(h + 2k + 1)^{2k} n^{O(1)} time either constructs a path-decomposition of GG of width at most kk or concludes correctly that the pathwidth of GG is larger than kk. (2) We show that there is a function f(k,h)f(k, h) such that every hh-semicomplete digraph of pathwidth at least f(k,h)f(k, h) has a semicomplete subgraph of pathwidth at least kk. One consequence of these results is that the problem of deciding if a fixed digraph HH is topologically contained in a given hh-semicomplete digraph GG admits a polynomial-time algorithm for fixed hh.Comment: 33pages, a shorter version to appear in ESA 201

    Experimental Evaluation of a Branch and Bound Algorithm for Computing Pathwidth and Directed Pathwidth

    Get PDF
    International audiencePath-decompositions of graphs are an important ingredient of dynamic programming algorithms for solving efficiently many NP-hard problems. Therefore, computing the pathwidth and associated path-decomposition of graphs has both a theoretical and practical interest. In this paper, we design a Branch and Bound algorithm that computes the exact pathwidth of graphs and a corresponding path-decomposition. Our main contribution consists of several non-trivial techniques to reduce the size of the input graph (pre-processing) and to cut the exploration space during the search phase of the algorithm. We evaluate experimentally our algorithm by comparing it to existing algorithms of the literature. It appears from the simulations that our algorithm offers a significant gain with respect to previous work. In particular, it is able to compute the exact pathwidth of any graph with less than 60 nodes in a reasonable running-time (≤ 10 minutes on a standard laptop). Moreover, our algorithm achieves good performance when used as a heuristic (i.e., when returning best result found within bounded time-limit). Our algorithm is not restricted to undirected graphs since it actually computes the directed pathwidth which generalizes the notion of pathwidth to digraphs
    corecore