
HAL Id: hal-01266496
https://hal.inria.fr/hal-01266496

Submitted on 2 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental Evaluation of a Branch and Bound
Algorithm for Computing Pathwidth and Directed

Pathwidth
David Coudert, Dorian Mazauric, Nicolas Nisse

To cite this version:
David Coudert, Dorian Mazauric, Nicolas Nisse. Experimental Evaluation of a Branch and Bound Al-
gorithm for Computing Pathwidth and Directed Pathwidth. ACM Journal of Experimental Algorith-
mics, Association for Computing Machinery, 2016, 21 (1), pp.23. �10.1145/2851494�. �hal-01266496�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49426422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01266496
https://hal.archives-ouvertes.fr


Experimental Evaluation of a Branch and Bound Algorithm for

Computing Pathwidth and Directed Pathwidth∗

David Coudert1,2 Dorian Mazauric1 Nicolas Nisse1,2

1. Inria, France
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Abstract

Path-decompositions of graphs are an important ingredient of dynamic programming algorithms
for solving efficiently many NP-hard problems. Therefore, computing the pathwidth and associated
path-decomposition of graphs has both a theoretical and practical interest. In this paper, we design
a Branch and Bound algorithm that computes the exact pathwidth of graphs and a corresponding
path-decomposition. Our main contribution consists of several non-trivial techniques to reduce the
size of the input graph (pre-processing) and to cut the exploration space during the search phase
of the algorithm. We evaluate experimentally our algorithm by comparing it to existing algorithms
of the literature. It appears from the simulations that our algorithm offers a significant gain with
respect to previous work. In particular, it is able to compute the exact pathwidth of any graph with
less than 60 nodes in a reasonable running-time (≤ 10 minutes on a standard laptop). Moreover, our
algorithm achieves good performance when used as a heuristic (i.e., when returning best result found
within bounded time-limit). Our algorithm is not restricted to undirected graphs since it actually
computes the directed pathwidth which generalizes the notion of pathwidth to digraphs.

1 Introduction

Because of their well known algorithmic interest, a lot of work has been devoted to the computation
of treewidth and tree-decompositions of graphs [9, 19, 20, 50]. On the theoretical side, exact exponen-
tial algorithms [2, 12, 13, 34], Fixed Parameter Tractable (FPT) algorithms [8, 16] and approximation
algorithms [11, 32, 48, 54] have been designed. Unfortunately, most of these algorithms are impractical
for large graphs. For instance, the algorithms in [2, 34] are Branch and Bound algorithms that have
exponential worst case time-complexity. The complexity of the algorithm presented in [12, 13] is both
exponential in time and space. The FPT algorithms whose time-complexity is at least exponential in
the treewidth are other examples of this impracticability for large graphs: as far as we know, there
exists no efficient implementation of the algorithm in [16] even for graphs with treewidth at most 4.
On the positive side, efficient algorithms exist for computing the treewidth of particular graph classes,
e.g., graphs with treewidth at most 4 [36]. Many heuristics for computing lower or upper bounds on the
treewidth have also been designed [1, 18–20].

Surprisingly, much less work has been devoted to the computation of pathwidth and path-decompositions
of graphs [6, 9, 28, 43, 49]. On the algorithmic point of view, it may sometimes be interesting to use
path-decompositions of graphs rather than tree-decompositions. Indeed, many NP-hard problems are
linear-time solvable in the class of graphs with bounded treewidth by dynamic programming on a tree-
decomposition of the input graph [26]. In such algorithms, the most time-expensive steps are often the
ones concerning the branching nodes (i.e., nodes with at least two children) in the decomposition. In case
when the pathwidth of a graph is not much larger than its treewidth, performing dynamic programming
on a path-decomposition would save time by avoiding such branching nodes. Another interest comes
from the fact that the pathwidth of any n-node graph is at most O(log n) times its treewidth [9]. Hence,

∗Extended abstract of this work has been presented at SEA 2014 [24]. This work has been partially supported by ANR
project Stint under reference ANR-13-BS02-0007, ANR program “Investments for the Future” under reference ANR-11-
LABX-0031-01, the associated Inria team AlDyNet and the project ECOS-Sud Chile.
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providing an efficient algorithm to compute pathwidth immediately leads to an efficient approximation
algorithm for computing the treewidth. Pathwidth has also been widely studied for its relationship with
many applications such that rescuing games (search games [6,7,9,40,44]), space/time tradeoff for register
allocations (pebble games [40]), VLSI design (gate matrix layout problem [27,33]), etc.

During the last decade, several digraph decompositions have been proposed in order to try to bring to
directed graphs the same algorithmic power as tree-decompositions provide in undirected graphs [4,37,38].
The directed counterpart of pathwidth has been defined by Reed, Thomas and Seymour (see [3]) and
also has applications in search games [64, 65]. Directed pathwidth has also an interesting application in
the context of routing reconfiguration in Wavelength-Division Multiplexing (WDM) networks. In this
problem, the perturbation of the traffic induced by a re-allocation of the routes for some requests in a
network can be measured by the directed pathwidth of the conflict digraph of these routes. Indeed, an
optimal directed path-decomposition is equivalent to a reconfiguration minimizing the maximum number
of simultaneous interruptions of the requests. Several heuristics as well as combinatorial and complexity
results have been proposed on the directed pathwidth in this context [22,23,25,56,57].

In this paper, we design an algorithm that computes the directed pathwidth and a corresponding
path-decomposition of directed graphs. We then provide an experimental analysis of our algorithm that
presents a significant improvement with respect to existing algorithms.

1.1 Practical computation of (directed) pathwidth

A path-decomposition [3] of a directed graph D = (V,A) is a sequence P = (X1, · · · , Xr) of subsets of
vertices of D such that:

1.
⋃

1≤i≤rXi = V ,

2. for any 1 ≤ i ≤ j ≤ k ≤ r, Xi ∩Xk ⊆ Xj , and

3. for any arc (u, v), there exist i ≤ j such that u ∈ Xi and v ∈ Xj .

The width of P is the size of the largest subset Xi minus one and the directed pathwidth of D, denoted by
dpw(D), is the minimum width among its path-decompositions. It is easy to see that, if D is symmetric
(i.e., if (u, v) ∈ A then (v, u) ∈ A for all u, v ∈ V ), then dpw(D) equals the pathwidth of the underlying
undirected graph. Hence, this definition generalizes the notion of pathwidth to directed graphs.

It is also easy to prove that any path-decomposition P = (X1, · · · , Xr) can be turned into another
path-decomposition (Y1, · · · , Yh) without increasing the width and such that |Yi+1 \ Yi| = 1 for any
1 ≤ i < h. Therefore, any path-decomposition of a n-node digraph corresponds to a layout (i.e., an
ordering) (v1, · · · , vn) of its vertices. Conversely, any layout of the vertices of a digraph defines a path-
decomposition of it.

Computing the pathwidth of graphs is NP-hard in planar cubic graphs [47], in chordal graphs [35],
and in bipartite distance hereditary graphs [42]. Therefore, computing the directed pathwidth is NP-hard
in the class of symmetric digraphs. Computing the pathwidth is polynomial-time solvable in the class of
cographs [21], permutation graphs [17], interval graphs, circular-arc graphs [59]. An exact algorithm for
computing the pathwidth of n-node graphs in time O(1.9657n) is designed in [60], and an exact algorithm
for computing the directed pathwidth of n-node digraphs in time O(1.89n) has been proposed in [41]. In
the undirected case, an FPT algorithm has been proposed in [16] and some kernelization reduction rules
are provided in [15]. On the practical side, to the best of our knowledge, very few implementations of
algorithms for computing the pathwidth (exact or bounds) have been proposed.

Implementation of exact algorithms. Solano and Pióro proposed in [57] an exact Branch and
Bound algorithm to compute the directed pathwidth of digraphs, that checks all possible layouts of the
nodes and keeps a best one. A mixed integer linear programming formulation (MILP) has been proposed
in [5,57]. Another algorithm for computing the pathwidth is based on a SAT formulation of the problem
that is solved using Constraint Programming solver [5]. None of these methods handle graphs with more
than 30 nodes.

A dynamic programming algorithm (exponential both in time and space) for computing pathwidth
of graphs is described in [12]. Two implementations of this algorithm have been proposed in [58, 61].
As far as we know, [61] is the single existing solution that manages to compute the pathwidth of some
graphs with more than 30 nodes.
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Heuristics. A polynomial-time heuristic for directed pathwidth is proposed in [23]. It aims at com-
puting a layout of the nodes in a greedy way. At each step, the next node of the layout is chosen using
a flow circulation method. A heuristic based on a Branch and Bound algorithm has been designed
in [57]. Recently, a heuristic has been proposed that is based on the combination of a Shake function
and Local Search [30, 53]: it consists in sequentially improving a layout by switching the nodes until a
local optimum is achieved.

1.2 Contributions and organization of the paper

We design a Branch and Bound algorithm that computes the exact directed pathwidth of digraphs and a
corresponding path-decomposition. Basically, our algorithm explores the set of all possible layouts of the
vertex-set, returning a layout with smallest width. Our main contribution consists of several non-trivial
techniques to reduce the size of the input digraph (pre-processing) and to cut the exploration space
during the search phase of the algorithm. Note that, some of the pre-processing rules are dedicated to
symmetric digraphs (equivalently, they are dedicated for computing the pathwidth of undirected graphs).
In Section 2, we prove several technical lemmas that allow us to prove the correctness of the pre-processing
phase (Section 2.2) and of the pruning procedures (Section 2.3). We present our algorithm and prove its
correctness in Section 3. Finally, in Section 4, we evaluate experimentally our algorithm by comparing
it to existing algorithms of the literature. It appears from the simulations that our algorithm offers a
significant gain with respect to previous work. It is able to compute the exact pathwidth of any graph
with less than 60 nodes in a reasonable running-time (≤ 10 minutes on a standard laptop). Moreover,
our algorithm achieves good performance when used as a heuristic (i.e., when returning best result found
within bounded time-limit).

2 Preliminaries

In this section, we formally define the notion of directed pathwidth in terms of directed vertex-separation.
Then, we give some technical lemmas that are used to prove the correctness of our algorithm.

2.1 Definitions and Notations

All graphs and digraphs considered in this paper are connected and loopless. Let G = (V,E) be a graph.
For any set S ⊆ V , let NG(S) be the set of nodes in V \ S that have a neighbor in S. For any arc
(u, v) ∈ A of a digraph D = (V,A), u is called an in-neighbor of v and v is an out-neighbor of u. For
any digraph D = (V,A) and any subset S ⊆ V , let N+

D (S) (resp., N−D (S)) be the set of nodes in V \ S
that have an in-neighbor (resp., an out-neighbor) in S. In other words, N+

D (S) (resp., N−D (S)) is the
set of nodes in V \ S that are out-neighbors (resp., in-neighbors) of some vertex in S. We omit the
subscript when there is no ambiguity. For any digraph D = (V,A) and a = uv ∈ A, let D/a be the
digraph obtained from D by contracting a. Let xa = xuv denote the vertex of D/a that results from the
identification of u and v. Let D \u be the digraph obtained from D by removing u and its incident arcs.

A strongly connected component C of a digraph D is a inclusion-maximal subgraph of D such that,
for any two vertices u, v ∈ V (C), there is a directed path from u to v in C. Abusing the notations, we
make confusion between C and V (C).

Layouts and vertex-separation. As observed in the Introduction, path-decompositions of (di)graphs
can be defined in terms of vertices layouts. More precisely, the pathwidth of a graph is known to be
equal to its vertex separation [39]. This result can easily be extended to directed graphs, i.e., the directed
pathwidth equals its directed vertex separation [64]. In what follows, we only use the layout terminology
as defined below.

Given a set S, a layout of S is any ordering of the elements of S. Let L(S) denote the set of all layouts
of S. Let S′ ⊆ S and P , Q be two layouts of S′ and S \ S′ respectively. Let P �Q be the layout of S
obtained by concatenating P and Q. Moreover, let LP (S) = {L ∈ L(S) | L = P � Q,Q ∈ L(S \ S′)},
i.e., LP (S) is the set of all layouts of S with prefix P .

Let D = (V,A) be a digraph and let L = (v1, · · · , v|S|) ∈ L(S) be a layout of S ⊆ V . For any 1 ≤ i ≤
|S|, let ν(L, i) = |N+

D ({v1, · · · , vi})| and ν(L) = maxi≤|S| ν(L, i). The directed vertex-separation of D,

3



denoted by vs(D), is equal to the minimum ν(L) among all layouts L of V , i.e., vs(D) = minL∈L(V ) ν(L)1.
In what follows, we will omit “directed” and simply call this parameter “vertex separation”. For any
digraph D, vs(D) = dpw(D) [64].

2.2 Technical lemmas for preprocessing

In this section, we prove some technical lemmas that will be useful to prove the correctness of the
preprocessing part of our algorithm.

Next lemma shows that we can restrict our study to strongly connected digraphs. We provide its
proof for completeness.

Lemma 1 (Folklore) Let D be any connected digraph and let SCC(D) be the set of strongly connected
components of D. Then, vs(D) = maxD′∈SCC(D) vs(D

′).

Proof. Let L be any layout of D and let D′ ∈ SCC(D). Let L′ be the corresponding layout of D′

(that is, for any u, v ∈ V (D′), u appears before v in L′ if and only if u appears before v in L). Then,
ν(L′) ≤ ν(L).

Conversely, for any D′ ∈ SCC(D), let LD′ be an optimal layout of D′. For any D′, D′′ ∈ SCC(D),
we set D′ ≺ D′′ if there is a path from D′′ to D′. Note that, in this case, there is no path from D′ to
D′′, and therefore ≺ is a partial order. Let L be the layout of D obtained by concatenating the layouts
in (LD′)D′∈SCC(D) in such a way that LD′′ is after LD′ if D′ ≺ D′′ for all D′, D′′ ∈ SCC(D) (this is
possible since ≺ is a partial order). Then ν(L) ≤ maxD′∈SCC(D) ν(LD′). �

In what follows, we show that we can contract some well chosen arcs of a digraph without modifying
its vertex-separation. It is well known that, in undirected graphs, edge-contraction cannot increase the
pathwidth. However, this is not true anymore in digraphs as shown in the following example. Let
D = ({a, b, c, d}, {ab, cb, cd, da}). D is acyclic and therefore, vs(D) = 0. On the other hand, D/cb is a
directed cycle with 3 nodes and vs(D/cb) = 1.

Lemmas 2 and 3 provide explicit conditions under which arc-contractions can be done without in-
creasing the vertex-separation.

Lemma 2 Let D = (V,A) be a n-node digraph and uv ∈ A such that either vu ∈ A or N−(v) = {u}.
Then, vs(D) ≥ vs(D/uv).

Proof. Let L = (v1, · · · , vn) be a layout of V with {u, v} = {vi, vj} and i < j.
Let us consider the layout L′ = (v′1, · · · , v′n−1) = (v1, · · · , vi−1, vi+1, · · · , vj−1, xuv, vj+1, · · · , vn) of

V (D/uv)2. Let 1 ≤ k < n−1, w ∈ N+
D/uv(v′1, · · · , v′k) and let x ∈ {v′1, · · · , v′k} such that xw ∈ A(D/uv).

Let Nk = N+
D (v1, · · · , vk) if k < i, and Nk = N+

D (v1, · · · , vk+1) if i ≤ k < j − 1, and Nk =
N+

D (v1, · · · , vk+2) if k ≥ j − 1.

• If w 6= xuv, then

– either x 6= xuv and xw ∈ A(D) and w ∈ Nk.

– or x = xuv, then k ≥ j − 1, w /∈ {u, v} and either uw ∈ A(D) or vw ∈ A(D). Therefore,
w ∈ Nk.

• If w = xuv then k < j − 1 and either xu ∈ A(D) or xv ∈ A(D).

– if k < i, then either u or v belong to Nk since xu ∈ A(D) or xv ∈ A(D).

– otherwise, i ≤ k < j − 1 and, by hypothesis on u and v:

∗ either vivj ∈ A, in which case vj ∈ Nk,

∗ or vi = v, vj = u and we have that xu ∈ A(D), since N−(v) = {u} and x 6= u (i.e.,
xv /∈ A(D)). Therefore, xu ∈ A(D) and u ∈ Nk.

1Note that a different slightly definition of directed vertex separation of DAGs has been introduced in [14]
2Here, to simplify the presentation, we slightly abuse the notations by identifying the nodes of D \ {u, v} and the nodes

of (D/uv) \ {xuv}.
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In all cases, we get that |N+
D/uv(v′1, · · · , v′k)| ≤ |Nk| and therefore, for all layouts L of D there is a

layout L′ of D/uv such that ν(L′) ≤ ν(L). Hence, vs(D/uv) ≤ vs(D). �

Lemma 3 Let D = (V,A) be a n-node digraph and u ∈ V such that N+(u) = {v}. Then, vs(D) ≥
vs(D/uv).

Proof. Let L = (v1, · · · , vn) be a layout of V with {u, v} = {vi, vj} and i < j. The case vivj ∈ A
is similar to the one of previous lemma. Therefore, let us assume that vi = v and vu /∈ A. Let us
consider the layout L′ = (v′1, · · · , v′n−1) = (v1, · · · , vi−1, xuv, vi+1, · · · , vj−1, vj+1, · · · , vn) of V (D/uv).
Let 1 ≤ k < n− 1, w ∈ N+

D/uv(v′1, · · · , v′k) and let x ∈ {v′1, · · · , v′k} such that xw ∈ A(D/uv).

Let Nk = N+
D (v1, · · · , vk) if k < i, Nk = N+

D (v1, · · · , vi−1, v = vi, · · · , vk) if i ≤ k < j, and
Nk = N+

D (v1, · · · , vi−1, v, vi+1, · · · , vj−1, u, vj+1, · · · , vk+1) if k ≥ j.

• If w, x 6= xuv, then xw ∈ A(D) and w ∈ Nk.

• If w = xuv then k < i, x /∈ {u, v}, and either xu ∈ A(D) or xv ∈ A(D). Hence, u or v belongs to
Nk.

• If x = xuv then k ≥ i, w /∈ {u, v}, either uw ∈ A(D) or vw ∈ A(D). But v being the single
out-neighbor of u and v 6= w, we get that vw ∈ A(D), and therefore, w ∈ Nk.

In all cases, we get that |N+
D/uv(v′1, · · · , v′k)| ≤ |Nk| and therefore, for all layouts L of D there is a

layout L′ of D/uv such that ν(L′) ≤ ν(L). Hence, vs(D/uv) ≤ vs(D). �

Next lemma show that under some conditions, the vertex-separation does not decrease after arc-
contraction.

Lemma 4 Let D = (V,A) be a n-node digraph and uv ∈ A such that,

• vu /∈ A (no loops are created during the contraction)

• and

– either N−(v) = {u} and N+(u)∩N+(v) = ∅, (v has in-degree 1 and no parallel arcs out-going
from xuv are created during the contraction)

– or N+(u) = {v} and N−(u)∩N−(v) = ∅ (u has out-degree 1 and no parallel arcs in-going to
xuv are created during the contraction).

Then, vs(D) ≤ vs(D/uv).

Proof. Let L′ = (v1, · · · , vi−1, xuv, vi+1, · · · , vn−1) be any optimal layout of D/uv.

Case: vkv /∈ A for any k < i, i.e., v /∈ N+
D (v1, · · · , vi−1). Note that, in particular, it is the case when

N−(v) = {u}.
Let L1 = (v1, · · · , vi−1, v, u, vi+1, · · · , vn−1) and L2 = (v1, · · · , vi−1, u, v, vi+1, · · · , vn−1).

We show that ν(L1) ≤ ν(L′) or ν(L2) ≤ ν(L′).

1. Let j < i and w ∈ N+
D (v1, · · · , vj). Since v /∈ N+

D (v1, · · · , vj), w 6= v.

• If w 6= u, then w ∈ N+
D/uv(v1, · · · , vj).

• Otherwise, there is vh, h ≤ j such that vhu ∈ A(D) and so vhxuv ∈ A(D/uv) and, thus,
xuv ∈ N+

D/uv(v1, · · · , vj).

Hence, in both cases, |N+
D (v1, · · · , vj)| ≤ |N+

D/uv(v1, · · · , vj)|.

2. Let j > i and w ∈ N+
D (v1, · · · , vj). Since w /∈ {u, v}, then w ∈ N+

D/uv(v1, · · · , vi−1, xuv,
vi+1, · · · , vj) and, again, |N+

D (v1, · · · , vj)| ≤ |N+
D/uv(v1, · · · , vj)|.
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3. By definition of xuv,

|N+
D (v1, · · · , vi−1, u, v)| = |N+

D (v1, · · · , vi−1, v, u)| = |N+
D/uv(v1, · · · , vi−1, xuv)|.

4. It remains to show that |N+
D (v1, · · · , vi−1, v)| ≤ ν(L′) or |N+

D (v1, · · · , vi−1, u)| ≤ ν(L′)

First, note thatN+
D (v1, · · · , vi−1, v) = (N+

D (v1, · · · , vi−1)\{v})∪(N+
D (v)∩{u, vi+1, · · · , vn−1}).

Moreover, since v /∈ N+
D (v1, · · · , vi−1) and vu /∈ A, this implies that

N+
D (v1, · · · , vi−1, v) = N+

D (v1, · · · , vi−1) ∪ (N+
D (v) ∩ {vi+1, · · · , vn−1}) (1)

On the other hand, by definition, we have that

N+
D (v1, · · · , vi−1, v, u) = (N+

D (v1, · · · , vi−1) \ {u})
⋃

((N+
D (v) ∪N+

D (u)) ∩ {vi+1, · · · , vn−1})
(2)

• If N+
D (v) ∩ {vi+1, · · · , vn−1} ⊆ N+

D (v1, · · · , vi−1), then by Equation (1) we have
N+

D (v1, · · · , vi−1, v) = N+
D (v1, · · · , vi−1). Hence, by item (1), we get that

|N+
D (v1, · · · , vi−1, v)| = |N+

D (v1, · · · , vi−1)| ≤ |N+
D/uv(v1, · · · , vi−1)|.

• Else, let us assume that (N+
D (v) ∩ {vi+1, · · · , vn−1}) \N+

D (v1, · · · , vi−1) 6= ∅.
– If, either (N+

D (u)\N+
D (v1, · · · , vi−1, v))∩{vi+1, · · · , vn−1} 6= ∅ or u /∈ N+

D (v1, · · · , vi−1),
then, by Equations (1) and (2), we get |N+

D (v1, · · · , vi−1, v)| ≤ |N+
D (v1, · · · , vi−1, v, u)| ≤

|N+
D/uv(v1, · · · , xuv)| (where the last inequality comes by item (3))

– Otherwise, since either N+(u) ∩ N+(v) = ∅ or N+(u) = {v}, we get that N+(u) ∩
{v, vi+1, · · · , vn−1} ⊆ N+

D (v1, · · · , vi−1) ∪ {v}.
Moreover, u ∈ N+

D (v1, · · · , vi−1). Hence, N+
D (v1, · · · , vi−1, u) = N+

D (v1, · · · , vi−1) ∪
{v} \ {u} and |N+

D (v1, · · · , vi−1, u)| = |N+
D (v1, · · · , vi−1)|. By item (1), we get that

|N+
D (v1, · · · , vi−1, u)| ≤ |N+

D/uv(v1, · · · , vi−1)|.

Hence, vs(D) ≤ min{ν(L1), ν(L2)} ≤ ν(L′) = vs(D/uv).

Case: there is k < i such that vkv ∈ A. In that case, we have N+(u) = {v} and N−(u)∩N−(v) = ∅.
Let ` be the smallest integer such that v`v ∈ A or v`u ∈ A.

Note that, since N−(u) ∩ N−(v) = ∅, either (` = k and v`v ∈ A and v`u /∈ A), or (` < k and
v`u ∈ A and v`v /∈ A).

Let L = (v1, · · · , v`, u, v`+1, · · · , vi−1, v, vi+1, · · · , vn−1).

We show that ν(L) ≤ ν(L′).

1. Let j < ` and w ∈ N+
D (v1, · · · , vj). Since v, u /∈ N+

D (v1, · · · , vj), w /∈ {u, v}. Therefore,
w ∈ N+

D/uv(v1, · · · , vj). Hence, |N+
D (v1, · · · , vj)| ≤ |N+

D/uv(v1, · · · , vj)|.

2. By definition of `, either u or v (not both) is in N+
D (v1, · · · , v`). Also, xuv ∈ N+

D/uv(v1, · · · , v`).
Moreover, for any w ∈ N+

D (v1, · · · , v`) \ {u, v}, we have that w ∈ N+
D/uv(v1, · · · , v`). Hence,

|N+
D (v1, · · · , v`)| ≤ |N+

D/uv(v1, · · · , v`)|.

3. Let j > i and w ∈ N+
D (v1, · · · , v`, u, v`+1, · · · , vi−1, v, vi+1, · · · , vj) = P , then

w ∈ N+
D/uv(v1, · · · , vi−1, xuv, vi+1, · · · , vj) and, again, |P | ≤ |N+

D/uv(v1, · · · , vj)|.

4. Let ` < j < i. Note that, v ∈ N+
D (v1, · · · , v`, u, · · · , vj) = P and xuv ∈ N+

D/uv(v1, · · · , vj).
Moreover, for any w ∈ P \ {v}, we have w ∈ N+

D/uv(v1, · · · , vj) because N+(u) = {v}.
Hence, |P | ≤ |N+

D/uv(v1, · · · , vj)|.

5. Moreover, by definition of xuv, |N+
D (v1, · · · , v`, u, v`+1, · · · , vi−1, v)| = |N+

D/uv(v1, · · · , xuv)|.

6. Finally, either v`u ∈ A, and then N+
D (v1, · · · , v`, u) = N+

D (v1, · · · , v`) ∪ {v} \ {u}, or v`v ∈ A,
and then N+

D (v1, · · · , v`, u) = N+
D (v1, · · · , v`).

In both cases, |N+
D (v1, · · · , v`, u)| ≤ |N+

D (v1, · · · , v`)| ≤ |N+
D/uv(v1, · · · , v`)| (the second in-

equality comes from the second item).
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Hence, vs(D) ≤ ν(L) ≤ ν(L′) = vs(D/uv).

�

Altogether, we get from previous lemmas:

Theorem 1 Let D = (V,A) be a n-node digraph and uv ∈ A such that, vu /∈ A, and either (N−(v) = {u}
and N+(u) ∩ N+(v) = ∅) or (N+(u) = {v} and N−(u) ∩ N−(v) = ∅). Then, vs(D) = vs(D/uv).
Moreover, an optimal layout for D can be obtained in linear time from an optimal layout of D/uv.

The next lemma is almost trivial in undirected graphs. We extend it to digraphs. Loosely speaking,
the next lemma say that, if a digraph D contains a symmetric path (a, b, c) as induced sub-digraph, any
link incident to a, b or c is symmetric, and a, b and c have degree at most 2 in the underlying undirected
graph (in particular, b has degree exactly 2), then contracting the arc (b, c) does not decrease the vertex
separation. This situation is depicted in Figure 1.

a b c

D \ {a,b,c}

at most 1 
neighbor

at most 1 
neighbor

a xbc

D \ {a,b,c}

Figure 1: Description of the situation in Lemma 5: before contraction (left) and after contraction (right).

Lemma 5 Let D = (V,A) be a n-node digraph and let a, b, c ∈ V be three nodes with N+
D (b) = N−D (b) =

{a, c}, N+
D (a) = N−D (a) and N+

D (c) = N−D (c). Moreover, |N+
D (a)| ≤ 2, |N+

D (c)| ≤ 2 and c /∈ N+
D (a).

Then, vs(D) = vs(D/bc).

Proof. If a and c have only b as a neighbor, the result holds trivially. Otherwise, w.l.o.g., let us assume
that y ∈ N+(c) \ {b} exists. Since cb ∈ A, by Lemma 2, vs(D/bc) ≤ vs(D).

Let L = (v1, · · · , vn−1) be a layout of D/bc. We first show that there is a layout L∗ of D/bc such
that ν(L∗) ≤ ν(L) and, in L∗, xbc appears between a and y. Then, we will show that there is a layout
L′ of D such that ν(L′) ≤ ν(L∗).

Let vi = a, vj = xbc and vk = y. If xbc is between a and y in L, i.e., either i < j < k or k < j < i,
then let us set L∗ = L. Otherwise, let us assume that k < i < j (the other cases, when i < k < j or
j < i < k or j < k < i, can be dealt with similarly by symmetry).

Then, consider the layout L∗ = (v1, · · · , vi−1, vj = xbc, vi = a, · · · , vj−1, vj+1, · · · , vn−1) of D/bc. We
show that ν(L∗) ≤ ν(L). Indeed, N+

D/bc(v1, · · · , vi−1, xbc) ⊆ N+
D/bc(v1, · · · , vi−1) ∪ {a} \ {xbc} (because

k < i) and, since xbc ∈ N+
D/bc(v1, · · · , vi−1), we get |N+

D/bc(v1, · · · , vi−1, xbc)| ≤ |N
+
D/bc(v1, · · · , vi−1)|.

Moreover, since xbc has no out-neighbor in {vi+1, · · · , vn−1}, we have
N+

D/bc(v1, · · · , vi−1, xbc, vi, · · · , vh) ⊆ N+
D/bc(v1, · · · , vh) \ {xbc} for any i ≤ h < n.

Hence, we may assume that L∗ = (v1, · · · , vn−1) is a layout of D/bc where i < j < k (the case
k < j < i is symmetric).

Let us consider the layout L′ = (v1, · · · , vi = a, b, vi+1, · · · , vj−1, c, vj+1, · · · , vn−1) of V .

• For all 1 ≤ h < i, |N+
D (v1, . . . , vh)| = |N+

D/bc(v1, . . . , vh)| since b /∈ N+
D (v1, . . . , vh).

• |N+
D (v1, . . . , vi)| = |N+

D/bc(v1, . . . , vi)| since xbc ∈ N+
D/bc(v1, . . . , vi), b ∈ N+

D (v1, . . . , vi) and, be-

cause y = vk with k > i, c /∈ N+
D (v1, . . . , vi).
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• Similarily, |N+
D (v1, . . . , vi, b)| = |N+

D/bc(v1, . . . , vi)|.

• Finally, for any i < h < n, |N+
D (v1, . . . , vh)| = |N+

D/bc(v1, . . . , vh)|.

Hence, ν(L′) ≤ ν(L∗). �

2.3 Technical lemmas for the Pruning part

In this section, we prove some technical lemmas that will be useful to prove the correctness of the Pruning
part of our Branch & Bound algorithm.

When looking for a good layout of the nodes of a digraph, our algorithm will, at some step, consider
a layout P of some subset S ⊂ V and look for the best layout L of V starting with P . Next lemma gives
some conditions on a node v ∈ V \S to ensure that the best solution starting with P � v is as good as L.

Lemma 6 Let D = (V,A) be a n-node digraph, S ⊂ V , and P ∈ L(S). If there exists v ∈ V \S such that
either N+(v) ⊆ (S∪N+(S)), or v ∈ N+(S) and there exists a vertex w such that N+(v)\(S∪N+(S)) =
{w}. Then, minL∈LP (V ) ν(L) = minL∈LP�{v}(V ) ν(L).

Proof. Note that, by definition, minL∈LP (V ) ν(L) ≤ minL∈LP�v(V ) ν(L).
Let P = (v1, · · · , v|S|) and let Q = (v|S|+1, · · · , vn) ∈ L(V \S) such that ν(P�Q) = minL∈LP (V ) ν(L).

Finally, let |S| < r ≤ n such that v = vr.

If N+(v) ⊆ S ∪ N+(S), then N+(v1, · · · , v|S|, v) ⊆ N+(v1, · · · , v|S|) and, for any |S| < j ≤ r,
N+(v1, · · · , v|S|, v, v|S|+1, · · · , vj) ⊆ N+(v1, · · · , vj).

If v ∈ N+(S) and there exists a vertex w such that N+(v) \ (S ∪N+(S)) = {w}, then
N+(v1, · · · , v|S|, v) = N+(v1, · · · , v|S|) ∪ {w} \ {v} and, for any |S| < j < r,
N+(v1, · · · , v|S|, v, v|S|+1, · · · , vj) ⊆ N+(v1, · · · , vj) ∪ {w} \ {v}.

In both cases, for any j, r ≤ j ≤ n, then N+(v1, · · · , v|S|, v, v|S|+1, · · · , vj) = N+(v1, · · · , vj).
Hence,

min
L∈LP�v(V )

ν(L) ≤ ν(P � v � (v|S|+1, · · · , vr−1, vr+1, · · · , vn))

= max
{
ν(P ); |N+(v1, · · · , v|S|, v)|; max

|S|<j<r
|N+(v1, · · · , v|S|, v, v|S|+1, · · · , vj)|;

max
r<j≤n

|(N+(v1, · · · , vj)|
}

≤ max
{
ν(P ); |N+(v1, · · · , v|S|)|; max

|S|<j≤r
|N+(v1, · · · , vj)|; max

r<j≤n
|N+(v1, · · · , vj)|

}
= ν(P �Q)

= min
L∈LP (V )

ν(L)

�

Our Branch & Bound algorithm presented in next section considers a priori all possible layouts of the
vertices of the input digraph. To speed it up, we aim at removing some of the layouts from the search
space. For this purpose, we record some partial orderings that have led to a solution whose cost is larger
than the one of the best solution obtained so far. During the exploration of an ordering, the algorithm
compares its prefix to the partial orderings already stored: if the prefix is a permutation of such a partial
ordering, next lemma proves that it is useless to pursue the exploration of this branch. Somehow, the
idea behind Lemma 7 is similar to the technique used by the dynamic programming algorithm proposed
in [12] in order to reduce the number of subsets to be considered.

Let L be the best layout of V having a prefix P . We express some conditions under which no layout
of V starting with a permutation of P is better than L.

Lemma 7 Let D = (V,A) be a n-node digraph, S ⊂ V and let P, P ′ ∈ L(S) be two layouts of S. If
ν(P ) < minL∈LP (V ) ν(L) or ν(P ) ≤ ν(P ′), then minL∈LP (V ) ν(L) ≤ minL∈LP ′ (V ) ν(L).
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Proof. Let r = |S| and let P = (v1, · · · , vr), P ′ = (v′1, · · · , v′r) ∈ L(S). Note that V (P ) = V (P ′) = S.
Let Q = (vr+1, · · · , vn) ∈ L(V \ S) such that ν(P ′ �Q) = minL∈LP ′ (V ) ν(L).

Note that, by definition, ν(P ) ≤ minL∈LP (V ) ν(L).

• Let us assume first that ν(P ) < minL∈LP (V ) ν(L) ≤ ν(P �Q).

min
L∈LP (V )

ν(L) ≤ ν(P �Q)

= max
1≤i≤n

|N+(v1, · · · , vi)|

= max{max
1≤i≤r

|N+(v1, · · · , vi)|; max
r<i≤n

|N+(v1, · · · , vi)|}

= max{ν(P ); max
r<i≤n

|N+(v1, · · · , vr, vr+1, · · · , vi)|}

= max
r<i≤n

|N+(v1, · · · , vi)| (because ν(P ) < ν(P �Q))

= max
r<i≤n

|N+(v′1, · · · , v′r, vr+1, · · · , vi)| (because V (P ) = V (P ′))

≤ max{ν(P ′); max
r<i≤n

|N+(v′1, · · · , v′r, vr+1, · · · , vi)|}

= ν(P ′ �Q)

= min
L∈LP ′ (V )

ν(L)

• Otherwise, ν(P ) = minL∈LP (V ) ν(L) and ν(P ) ≤ ν(P ′).

min
L∈LP (V )

ν(L) = ν(P )

≤ max{ν(P ); max
r<i≤n

|N+(v1, · · · , vr, vr+1, · · · , vi)|}

= max{ν(P ); max
r<i≤n

|N+(v′1, · · · , v′r, vr+1, · · · , vi)|} (because V (P ) = V (P ′))

≤ max{ν(P ′); max
r<i≤n

|N+(v′1, · · · , v′r, vr+1, · · · , vi)|} (because ν(P ) ≤ ν(P ′))

= ν(P ′ �Q)

= min
L∈LP ′ (V )

ν(L)

�

3 The algorithm

In this section, we present our exact exponential-time algorithm for computing vs(D) for any n-node
digraph D = (V,A). To ease the presentation, we assume that D is strongly connected. If this is not
the case, we apply all the steps of our algorithm to each of its strongly connected components, and then
use the construction presented in the proof of Lemma 1 to deduce in linear time the layout L of D such
that ν(L) = vs(D).

The algorithm starts by a pre-processing phase in order to reduce the size of the input. Then, our
algorithm is based on a Branch & Bound procedure.

3.1 Pre-processing and Post-processing phases

In this section, we describe some simple rules that, for any (di)graph D, allows to compute a smaller
(di)graph D∗ (pre-processing) such that an optimal layout for D can easily be obtained from an optimal
layout of D∗ (post-processing). We give the pre-processing rules to build D∗ from D as well as the way
to build an optimal layout of D from an optimal layout of D∗ in parallel.

The following reduction rules are applied while it is possible. The rules that have been proposed
for undirected graphs can be used only when D is a symmetric digraph. Note that, the digraph D∗
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obtained after applying once one of these rules is strongly connected, and that given the layout L∗ such
that ν(L∗) = vs(D∗), one can deduce in linear time a layout L for D such that ν(L) = vs(D).

In what follows, we formally define the reduction rules and explain how to get an optimal layout L
for D from an optimal layout L∗ of the reduced graph D∗. Given any layout L = (v1, · · · , vn), let us set
L−1(vi) = i for any 1 ≤ i ≤ n.

Rule A: If there is uv ∈ A such that, vu /∈ A, and either (N−(v) = {u} and N+(u) ∩N+(v) = ∅), or
(N+(u) = {v} and N−(u) ∩N−(v) = ∅), then let D∗ = D/uv (By Theorem 1, vs(D∗) = vs(D)).

Let L∗ = (v1, · · · , vi−1, xuv, vi+1, · · · , vn−1) = P � xuv � Q be an optimal layout of D∗ (i.e.,
ν(L∗) = vs(D∗)). Then, a layout L of D such that ν(L) = vs(D) can be computed from L∗ as
follows (see the proof of Theorem 1).

• If v /∈ N+
D (P ), then

– if N+
D (v) ∩ Q ⊆ N+

D (P ) or (N+
D (u) \ N+

D (P ∪ {v})) ∩ Q 6= ∅ or u /∈ N+
D (P ), then let

L = P � v � u�Q.

– else, let L = P � u� v �Q.

• Else, let ` be the smallest integer such that v`v ∈ A or v`u ∈ A, and now, let L∗ = P1 � v` �
P2 � xuv �Q. We obtain L = P1 � v` � u� P2 � v �Q.

Rule B: If there are three nodes a, b, c ∈ V with N+
D (b) = N−D (b) = {a, c}, N+

D (a) = N−D (a) = {b, x},
N+

D (c) = N−D (c) = {b, y}, and x 6= c, then let D∗ = D/bc (By Lemma 5, vs(D∗) = vs(D)).

Let L∗ = (v1, · · · , vi−1, xbc, vi+1, · · · , vn−1) be an optimal layout of D∗ (i.e., ν(L∗) = vs(D∗)).
Then, as shown in the proof of Lemma 5, a layout L of D such that ν(L) = vs(D) can be
computed from L∗ as follows.

First, if xbc appears between a and y in L∗, let L′ = L∗. Otherwise, L′ is obtained from L∗ by
removing xbc and re-inserting it just after the first of y and a. For instance, if L∗ = P � a�Q�
y �R� xbc � S, then L′ = P � a� xbc �Q� y �R� S.

Finally, L is obtained from L′ by replacing xbc by b then c if y is after xbc in L′, or by replacing
xbc by c then b if y is before xbc in L′. For instance, if L∗ = P � xbc �Q� y � R then we obtain
L = P � b� c�Q� y �R.

Rule C: If D is symmetric, let G be the underlying undirected graph. It is shown in [15] that vs(D∗) =
vs(D) when D∗ is obtained as follows.

C.1: If (in G) two degree-one vertices u and v share the same neighbor w, then D∗ = D \ u.

To compute an optimal layout L for D from an optimal layout L∗ = P � w �Q for D∗, it is
sufficient to insert u before w, i.e., L = P � u� w �Q is an optimal layout for D.

C.2: If (in G) v, w are two vertices of degree two with common neighbors x and y, then D∗ = D/vx.

To compute an optimal layout L for D from an optimal layout L∗ for D∗, it is sufficient to
“insert” v in L∗ before the leftmost of xvx and y. For instance, if L∗ = P � xvx �Q� y �R
then L = P � v � x�Q� y �R.

Note that, each time that one of the above rules is applied, the number of nodes decreases by one
and therefore, the worst case time-complexity is divided by n. When no reduction rules can be applied
anymore, the Branch & Bound algorithm, that we call B&B, is applied as explained in Section 3.2, and
afterwards, the layout for the original graph can be deduced in linear time as explained above.

3.2 Branch & Bound phase

We now describe our Branch & Bound algorithm, called B&B. The main contribution of our work
consists of the way we cut the exploration of all layouts of V . Intuitively, let S ⊂ V and P be a layout
of S that Procedure B&B is testing, i.e., let us consider a step when B&B is considering all layouts of
V with prefix P . Moreover, let LUB be the best layout of D obtained so far by B&B. We use the two
following pruning rules:
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1. Decide, using Lemma 7, if it is useful to explore layouts with prefix P . To this end, we maintain a
table P that contains, among others, some subsets of V . If there is an entry in P for S ⊂ V that
satisfies some properties, we can decide that the best layout starting with the nodes in S cannot
be better than LUB and therefore, we do not test further layouts with prefix P .

2. Greedily extend the current prefix P with a vertex v ∈ V \ V (P ) if v satisfies the conditions of
Lemma 6. This allows us to restrict the exploration of all the layouts with prefix P to the layouts
with prefix P � v.

As shown in the next section, these two pruning rules allow our algorithm to achieve better perfor-
mances than existing ones for computing the vertex-separation of digraphs. Let us now describe the
recursive procedure B&B (Algorithm 3) more formally and prove its correctness. It takes as inputs:

• D = (V,A), the considered digraph.

• LUB and UB such that LUB is the best layout of V obtained so far and UB = ν(LUB). Note that
UB is an upper bound for vs(D).

• A layout P of a subset S ⊆ V . Intuitively, P is the prefix of the layouts that will be tested by this
execution of B&B. That is, either Procedure B&B will find a layout L = P � Q of V such that
ν(L) < ν(LUB) or it decides that ν(L) ≥ ν(LUB) for any L ∈ LP (V ).

• P is a set of triples (Si, νi, bi)i≤|P|, where Si ⊂ V , νi is an integer, and bi is a boolean for any
i ≤ |P|. Intuitively, (Si, νi, bi) ∈ P means that a layout Pi of Si has already been checked, and, if
bi = 1, then it is useless to test any other layout of V starting with the nodes in Si.

Moreover, νi = ν(Pi) and bi = 0 if νi = minL∈LPi
(V ) ν(L).

The initial values for the inputs of B&B are: P = ∅, LUB is any layout L of V and UB = ν(L) < |V |,
and P = ∅. Let P = (Si, νi, bi)i≤|P| and (LUB , UB) be the current values of the global variables at some
step of the execution of the algorithm. Then, executing B&B(D,P,UB,LUB ,P), with P = (v1, · · · , vk)
being a layout of S = {v1, · · · , vk}, proceeds as follows.

• If ν(P ) ≥ UB, then B&B(D,P,UB,LUB ,P) does nothing, i.e., the exploration of the layouts
starting by P stops. Indeed, minL∈LP (V ) ν(L) ≥ ν(P ) by definition. Therefore, minL∈LP (V ) ν(L) ≥
UB and no layout of V starting with P can be better than LUB .

• Else, if (S, x, b) belongs to P, then this means that a layout P ′ of S has been already tested, x =
ν(P ′) and UB ≤ minL∈LP ′ (V ) ν(L). If b = 1 or ν(P ) ≥ ν(P ′), then B&B(D,P,UB,LUB ,P) does
nothing, i.e., the exploration of the layouts starting by P stops. Indeed, either x < minL∈LP ′ (V ) ν(L)
(if b = 1) or ν(P ) ≥ ν(P ′). By Lemma 7, minL∈LP ′ (V ) ν(L) ≤ minL∈LP (V ) ν(L). Again, no layout
of V starting with P can be better than LUB .

• Otherwise, B&B(D,P,UB,LUB ,P) applies the sub-procedure Greedy(D,P ) (Algorithm 1) that
returns a prefix P ′ extending P (i.e., P is a prefix of P ′) and minL∈LP (V ) ν(L) = minL∈LP ′ (V ) ν(L).
Then, it calls B&B(D,P ′�v, UB,LUB ,P) for all v ∈ V \V (P ′) such that ν(P ′�v) < UB, starting
from the most promising vertices (i.e., by increasing value of ν(P ′ � v)).

At the end of the exploration of the layouts with prefix P , we update the table P (Algorithm 2).
That is,

– if there was no triple (S, ∗, ∗) in P, then, (S, ν(P ), b) is added to P with b = 0 if and only if
ν(P ) = ν(LUB).

– else, i.e., if there is (S, x, 0) ∈ P with ν(P ) < x and ν(P ) < UB, then (S, ν(P ), b) replaces
(S, x, 0) in P with b = 0 if and only if ν(P ) = ν(LUB).
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Algorithm 1 Greedy(D,P ).

Require: A digraph D = (V,A), a layout P of S ⊆ V
1: S := V (P ) and P ′ := P
2: while ∃ v ∈ V \ S s.t. N+(v) ⊆ S ∪N+(S) or ∃ v ∈ N+(S) s.t. |N+(v) \ (S ∪N+(S))| = 1 do
3: P ′ := P � v and S := S ∪ {v}
4: return P ′

Algorithm 2 Update-prefix-table(D,P, P, Current, vs∗).
1: if vs∗ < Current and ν(P ) = vs∗ then b := 0 else b := 1
2: if (V (P ), ν(P ), 0) ∈ P then
3: Replace (V (P ), ν(P ), 0) with (V (P ), ν(P ), b) in P
4: else
5: Add (V (P ), ν(P ), b) in P

4 Simulations and interpretation of results

In this section, we evaluate the performance of our algorithm. In particular, we compare it to other
exact algorithms and heuristics of the literature. We also analyze the impact of the three optimization
phases of our algorithm : pre-processing, greedy steps, and pruning using prefixes. It appears that our
algorithm is able to compute the vertex-separation of all graphs with at most 60 nodes but also for some
graphs up to 250 nodes. Not only does our algorithm outperforms existing exact algorithms but it can
also be used as a good heuristic to obtain upper bounds on the vertex-separation.

4.1 Implementation

We have implemented several variants of our Branch and Bound algorithm in order to analyze the
impact of each of our optimization sub-procedures. Our algorithms are implemented in Cython using
the Sagemath open-source mathematical software [58]. All computations have been performed on a
computer equipped with a Intel Xeon CPU operating at 3.20GHz and 64GB of RAM. Note that, all the
algorithms take a digraph as input. If the input is a non-directed graph, we consider it as a symmetric
directed graph. We now present our variants of the Branch and Bound algorithm.

4.1.1 Our variants of the Branch and Bound algorithm

• BAB. This is the basic version of the branch and bound algorithm (as already implemented in [57]).
It takes digraph D as an input and is applied sequentially on each of the strongly connected
components of D. For each strongly connected component C of D, BAB considers all possible
layouts of V (C) and keeps a layout L minimizing ν(L).

• BAB-P. In this variant, we add the pre-processing phase to the basic variant BAB. That is, if
some arc-contractions or node-deletions can be performed on the input digraph, we execute them.

• BAB-GP. In this variant, we add the greedy-step process (Algorithm 1) to the variant BAB-P.

• BAB-GPP. This last variant is our main algorithm which is obtained from BAB-GP by adding
a cut-process by storing some subsets of nodes a layout of which has already been tested as prefix
(Algorithm 2).

For the different variants, it is critical to have a fast access to the data structure representing the
digraph. To speed-up critical operations on neighborhoods (union, intersection, size, etc.), we store out-
neighborhoods using bitsets (in particular, a single integer when n ≤ 64). This enables us to use bitwise
operations (or for union, and for intersection, etc.).

For BAB-GPP, the prefixes are stored in a tree structure which allows us a fast access to already
tested prefixes. We parameterized the maximum length of a prefix (which corresponds to the tree depth)
and set it by default to min{n/3, 50}. The total number of stored prefixes is also parameterized to limit
memory usage. By default we store at most 107 prefixes.
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Algorithm 3 B&B(D,P, vs∗, L∗,P).

1: if ν(P ) < vs∗ and (V (P ), ν(P ), 1) /∈ P then
2: P ′ := Greedy(D,P )
3: if V (P ′) = V and ν(P ′) < vs∗ then
4: return (ν(P ′), P ′)
5: else
6: Current := vs∗

7: for all v ∈ V \ P ′, by increasing values of ν(P ′ � v) do
8: if ν(P ′ � v) < vs∗ then
9: (vs′′, L′′) := B&B(D,P ′ � v, vs∗, L∗,P)

10: if vs′′ < vs∗ then
11: (vs∗, L∗) := (vs′′, L′′)
12: Update-prefix-table(D,P, P, Current, vs∗)
13: return (vs∗, L∗)

Finally, we used a timer to limit computation time per (di)graph. When the time is up, we return
the best solution found so far and record it as an upper-bound on the vertex-separation of the input
digraph. Following [5], we set this limit to 10 min as both CPUs used are comparable.

4.1.2 Previous exact algorithms.

The pathwidth problem is known to be Fixed Parameter Tractable, that is, vs(G) ≤ k can be decided
in time f(k)|V (G)| [16]. However, the function f is of order O(2k

c

) for some c ≥ 2 [8]. Moreover,
pathwidth is unlikely to have a polynomial kernel [10], more precisely, pathwidth and treewidth do not
have a polynomial kernel unless NP ⊆ coNP/poly [29]. Few FPT algorithms have been implemented [51]
and people have focused on exact exponential-time algorithms.

In addition to the basic Branch and Bound BAB of Solano [57], we are aware of the following
implementations of algorithms to compute vertex-separation of graphs.

• MILP. Some mixed integer linear programming formulations for the vertex-separation (MILP)
have been proposed in [5, 57]. A similar formulation has been implemented in Sagemath3. We use
this function for purpose of comparison.

• DYNPROG. In [12], a dynamic programming algorithm, called DYNPROG, is designed to com-
pute the vertex-separation of a digraph D. Roughly, this algorithm aims at deciding whether
vs(D) ≤ k for all k = 1, · · · , |V (D)|. For a given k ≤ |V (D)|, DYNPROG stores the subsets of
V (D) with border at most k and uses dynamic programming to limit the number of stored sub-
sets. An implementation of DYNPROG is also available in Sagemath [58]3. This implementation
encodes each subset L and neighborhoods as words of n bits and stores the values ν(L) in an array
of size 2n. While enabling fast bitwise operations, these implementation choices restrict its usage
to graphs with strictly less than 32 nodes.

• SAT. In [5], an algorithm to compute the pathwidth of graphs is designed by formulating the
PATHWIDTH problem as a Boolean satisfiability testing (SAT) instance and solving this SAT
instance using the MiniSat solver [45]. No implementations are provided but the algorithm has
been tested on the Rome graphs dataset [52]. The SAT algorithm have been able to compute the
pathwidth of 17% of the instances in the Rome graphs dataset.

4.2 Evaluation in random digraphs

In this section, we use the available implementations of MILP and DYNPROG in Sagemath to compare
their performance with our algorithms in random directed graphs. Random directed graphs with N
nodes are generated using the graphs.RandomDirectedGNM(N,M) method of Sagemath to generate them,
where M = density ∗ N(N − 1) is the number of arcs. Recall that in the G(N,M) model, a graph is

3Module sage.graphs.graph decompositions.vertex separation.
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chosen uniformly at random among all graphs with N nodes and M arcs [31]. For several network sizes
(N ∈ {20, 25, 30, 40, 50}), we execute the algorithms for various densities (0 < density < 1). For any
N and each density, we run the algorithms on 1 000 instances. The same instances are used for all
algorithms. The average running times are depicted on Fig. 2.

It took us one week of computations to generate Fig. 2(a) whose purpose is only to show that MILP is
not competitive w.r.t. other methods by orders of magnitude. Concerning DYNPROG, it is faster than all
other methods when N = 20 (Fig. 2(a)), but starting from N = 25 (Figs. 2(b) and 2(c)), our algorithms
are significantly faster. Recall that we have performed our experiments using the implementation of
DYNPROG that is available in [58], which can be used only for graphs with strictly less than 32 nodes.

For N ≥ 30, the basic variant of BAB behaves as well as other variants for density ≥ 0.5, but for
smaller densities the computation time is not competitive (several hours). Therefore, we did not report
on its performances on the plots.

Impact of optimization Phases. In Figs. 2(b) to 2(e), we observe that for densities ≥ 0.4, all
variants of the Branch and Bound algorithm are very fast with negligeable differences (< 0.01 sec.).
However, we observe large variations for smaller densities. More precisely, we observe in Fig. 2(b) the
speed-up offered by the pre-processing phases w.r.t. the basic Branch and Bound proposed in [57].
Indeed, removing one vertex of the input digraph reduces the search space by a factor n, and so the
overall computation time. We then observe that the Greedy steps offer significant additional speed-up.
This is particularly impressive in Fig. 2(c) which reports a reduction of the overall computation time
by two orders of magnitude. Finally, Fig. 2(d) reports large speed-up when using prefixes to cut the
search space. In Fig. 2(e), we point out that the running time of BAB-GPP varies a lot depending
on the graphs (especially for graphs with small density). We report on the variations in running time
when N = 50 and using the best settings of our algorithm. For densities below than 0.4, the running
time varies by up to two orders of magnitude, while for larger densities, the range of variations is very
small. Last, we have reported in Fig. 2(f) the evolution of the running time of BAB-GPP for different
densities. This confirms that the higher the density, the larger the size of the graphs we are able to solve.
Note that we have observed the same behaviors for all algorithms with undirected graphs.

4.3 Impact of prefix length

Our main algorithm BAB-GPP is parameterized by the maximum length of the prefixes that we store
and that allow us to cut the search space during the Branch and Bound process. We have evaluated
the impact of this parameter when our algorithm is executed on some specific graphs. In particular, the
Mycielski graph is considered as a hard instance for integer programming formulations for pathwidth [46].
The Mycielski graph Mk is a triangle-free graph with chromatic number k having the smallest possible
number of vertices. Note that, |V (M2)| = 2 and |V (Mk)| = 2|V (Mk−1)|+ 1 for any k > 2. We ran our
algorithm on the Mycielski graph Mk for k ≤ 8. Our results are depicted in Tab. 1 (for k ∈ {8} we only
got upper bound).

k 1 2 3 4 5 6 7 8

|V (Mk)| 1 2 5 11 23 47 95 191

pw(Mk) 0 1 2 5 10 20 38 ≤ 72

Table 1: Pathwidth of some Mycielski graphs.

Tab. 2 presents the running time of BAB-GPP for the Mycielski graph M6 and different bounds
on the size of the stored prefixes. In Tab. 2, the column Visited nodes refers to the number of nodes of
the Branch and Bound exploration space that are actually considered. Tab. 2 shows that storing larger
prefixes allows for an impressive reduction of the computation time. However, we have no improvement
here when allowing length of 20 instead of 15, and larger values behave similarly. This is probably due
to the fact that in this experiment, because of the greedy steps, the algorithm stores only one prefix of
length > 15.

This suggests that the combination of the greedy steps and of the storage of the prefixes allows good
performance even with bounded length of the prefixes. Thus, memory-space seems not to be an issue for
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(a) N = 20 (b) N = 25

(c) N = 30 (d) N = 40

(e) N = 50, variations (f) Computation time per densities, using BAB-GPP.

Figure 2: Average running time of the algorithms on random digraphs.
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Max. prefix Time Visited nodes Stored

length (in sec.) prefix

1 2226.45 1 256 780 074 44

5 144.93 82 417 700 16 386

8 5.81 3 319 482 47 756

10 1.07 664 677 61 466

15 0.77 496 482 65 252

20 0.78 496 482 65 253

Table 2: Running time of BAB-GPP for the Mycielski graph M6.

graphs of reasonable size (even though the algorithm might potentially store an exponential number of
prefixes).

This observation is further supported by experiments on the Mycielsky graph M7 with 95 nodes.
While the algorithm was not able to return a solution after one month of computation when restricting
the size of the prefixes to 20, we got the optimal solution in 14 minutes storing 10 496 595 prefixes of size
up to 30, and in 10 minutes storing 10 497 628 of size up to 40. Larger values are not helpful here.

4.4 Comparison of BAB-GPP with SAT on Rome graphs

The Rome graphs dataset [52] consists of 11 534 undirected n-node graphs with 10 ≤ n ≤ 100. In [5],
the performance of the SAT algorithm has been evaluated using this benchmark4. With 10 minutes time
limit per graph, the algorithm of [5] has been able to compute the pathwidth for 17.0% of the Rome
graphs. In particular, it is stated that “We note that almost all small graphs (n + m < 45) could be
solved within the given timeout, however, for larger graphs, the percentage of solved instances rapidly
drops [. . . ] Almost no graphs with n+m > 70 were solved.” [5] (where m is the number of edges of the
considered graphs).

In contrast, our algorithm has computed the pathwidth of 95.6% of the graphs in the Rome dataset,
with same time limit of 10 minutes Note that, in particular, we solved all instances with at most 82
vertices. We report in Tab. 3 the repartition of (un)solved instances.

N ≤ 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Total

Nb graphs 9586 86 78 73 70 68 69 63 59 116 119 134 154 139 148 139 143 144 141 11 529

Solved 9586 85 77 68 65 62 65 59 50 96 91 104 113 91 110 80 77 70 78 11 027

Unsolved 0 1 1 5 5 6 4 4 9 20 28 30 41 48 38 59 66 74 63 502

Table 3: Repartition of (un)solved instances.

4.5 TreewidthLIB

The TreewidthLIB [62] contains 710 graphs among which 387 are obtained from others by pre-processing.
We considered only the 322 non pre-processed graphs. We were able to solve 139 of these graphs (in
less than a second for most of them). We report some of these results in Tab. 4. Furthermore, we were
able to solve 27 out of the 62 Delaunay triangulation of TSP instances (see Tab. 5). Observe that the
pre-processing phase has not been able to reduce the size of any of these instances.

4.6 Using BAB-GPP as a heuristic

Some research has been devoted to design heuristic algorithms for this problem. [30, 53] proposed the
following: starting from some layout of the nodes of D, the solution is improved by switching pairs of

4Computations in [5] have been performed on a computer equipped with a AMD Opteron 6172 processor operating at
2.1GHz and 256GB of RAM.

16



Name N M N∗ M∗ pw time (in sec.)

BN 28 24 49 23 48 5 0.004
BN 29 24 49 23 48 5 0.004
alarm 37 65 36 64 4 0.006
barley 48 126 – – 7 0.006
david 87 406 78 397 13 99.47
diabetes 413 819 – – 6 122.6
fungiuk 15 36 – – 4 0.001
games120 120 638 – – 32 148.4
graph03 100 340 – – 21 19.18
graph05 100 416 – – 25 65.0
knights8 8 64 168 – – 16 7.246
mainuk 48 84 47 83 6 0.012
mildew 35 80 – – 5 0.002
miles750 128 2 113 – – 36 51.19
miles1000 128 3 216 – – 49 0.696
miles1500 128 5 198 – – 77 0.098
mulsol.i.5 176 3 973 – – 31 67.31
oesoca 39 67 35 63 4 0.007
oesoca42 42 72 36 66 4 0.007
oesoca+ 67 208 60 201 11 54.73
queen5 5 25 160 – – 18 0.004
queen6 6 36 290 – – 25 0.008
queen7 7 49 476 – – 35 0.022
queen8 8 64 728 – – 45 0.093
queen8 12 96 1 368 – – 65 4.262
queen9 9 81 1 056 – – 58 1.851
queen10 10 100 1 470 – – 72 25.92
sodoku 81 810 – – 45 2.569
sodoku-elim1 80 898 – – 45 1.107
water 32 123 – – 10 0.004
weeduk 15 24 12 21 4 0.002
zeroin.i.1 126 4 100 – – 50 0.937

Table 4: Some computational results on solved instances from [62].

nodes in the layout until no further improvement can be obtained. The VSPLIB [63] has been designed
for benchmarking this heuristic [30]. VSPLIB [63] contains 173 instances: 50 γ×γ grids with 5 ≤ γ ≤ 54;
50 trees with respectively 22, 67, and 202 nodes and pathwidth 3, 4, and 5; a set of 73 graphs of order
n, called hb, with 10 ≤ n ≤ 960 (see [30] for more details). In particular, the pathwidth of γ × γ grids
equals γ and the pathwidth of trees can be computed in linear time [55]. Therefore, this benchmark
allows to evaluate the performance of heuristic. We tested the Algorithm BAB-GPP as a heuristic on
the graphs of VSPLIB. If the time is up before the end of BAB-GPP’s execution, the algorithm returns
the value computed so far (i.e., an upper bound on the pathwidth of the graph).

We were able to compute the exact pathwidth for all grids with side γ ≤ 13, trees with n ≤ 67, and
26 of the hb graphs including one with 957 nodes. For all grids and trees of the VSPLIB, the final value
returned by BAB-GPP equals the exact pathwidth. That is, our algorithm always finds quickly an
optimal layout and most of the execution time is devoted to prove its optimality.

In particular for a γ × γ grid, the first solution found is always the pathwidth. This is due to the
order in which we add the vertices in the layouts: starting from a node with smallest degree and always
adding a node that minimizes the increase of the size of the border. Proceeding that way will always
give an optimal layout in square grids.

For trees, the first layout tested by BAB-GPP is not always the optimal one, but an optimal one is
found very quickly. It would be interesting to understand why our Branch and Bound algorithm performs
well in trees5.

5Note that optimal path-decompositions are computable in linear time in trees [55].
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Name N M pw time (in sec.)

bier127.tsp 127 368 15 2.797
ch130.tsp 130 377 12 0.358
ch150.tsp 150 432 13 0.788
eil101.tsp 101 290 11 0.045
eil51.tsp 51 140 8 0.005
eil76.tsp 76 215 11 0.027
kroA100.tsp 100 285 10 0.025
kroA150.tsp 150 432 12 1.189
kroA200.tsp 200 586 13 1.266
kroB100.tsp 100 284 10 0.023
kroB150.tsp 150 436 12 0.4
kroB200.tsp 200 580 13 1.511
kroC100.tsp 100 286 10 0.025
kroE100.tsp 100 283 9 0.015
lin105.tsp 105 292 9 0.015
pr76.tsp 76 218 10 0.013
pr107.tsp 107 283 7 0.01
pr124.tsp 124 318 10 3.781
pr136.tsp 136 377 10 0.065
pr144.tsp 144 393 10 0.124
pr152.tsp 152 428 11 0.405
pr226.tsp 226 586 8 6.139
rat195.tsp 195 562 13 1.247
rat99.tsp 99 279 10 0.023
rd100.tsp 100 286 11 0.043
tsp225.tsp 225 622 13 116.8
u159.tsp 159 431 12 1.912

Table 5: Computational results for Delaunay triangulation of TSP instances from [62].

5 Conclusion

In this paper, we have presented a new Branch and Bound algorithm for computing the pathwidth of
graphs and the vertex-separation of digraphs. Our approach is more promising than previous proposals,
based on ILP or SAT, for solving large instances. Indeed, the drawbacks of ILP and SAT formulations
for layout problems are both in the large number of symmetries of the problems, and in the time needed
to fill the optimality gap (i.e., distance between the lower bound based on the fractional relaxation of
the formulation and the best integral solution).

Very recently, another very similar branch and bound algorithm has been proposed to compute the
pathwidth of graphs [43]. Their algorithm has been tested on TreewidthLIB and it appears that, in
most of the cases, our algorithm is better. Working on the instances for which their algorithm is better
leads us to the following observation: the ordering in which the vertices are initially labeled (i.e., their
names in the encoding of the graph) has a strong impact on the performance of our algorithm. Indeed,
when extending a prefix, our algorithm tries all possible nodes in some ordering (“by increasing value of
ν(P ′ � v)”). However, ties are broken using the identifiers of the vertices. Our recent experiments have
shown that, on the instances on which the algorithm of [43] seemed better, just reordering randomly
the identifiers of the nodes allowed our algorithm to achieve same performances as [43]. Hence, one
important next step to improve our algorithm will be to study in more detail the impact of the initial
labeling of the nodes, as well as alternative tie-breaking methods (i.e., methods to order vertices with
same value ν(P ′ � v) Line 7 of Algorithm 3).

On the other hand, we will search for new pruning rules to further reduce computation time. In
particular, looking for good lower bounds for pathwidth of graphs is a theoretical issue that has not
received much attention. It would moreover speed up our algorithm since the main computation time
seems dedicated to prove the optimality of the best value computed. In particular, lower bounds for
pathwidth that are not lower bounds for treewidth would be very interesting. It would also be interesting
to find new pre-processing rules to further reduce the size of the input digraph. For instance, does Rule
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C.2 extend to directed graphs?
Finally, the branch-and-bound algorithm presented in this paper (without the pre-processing phase)

is now included in Sagemath and so it can be used by others to perform comparisons on a fair basis.
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