503 research outputs found

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs

    Parameterized Algorithms for Directed Maximum Leaf Problems

    Full text link
    We prove that finding a rooted subtree with at least kk leaves in a digraph is a fixed parameter tractable problem. A similar result holds for finding rooted spanning trees with many leaves in digraphs from a wide family L\cal L that includes all strong and acyclic digraphs. This settles completely an open question of Fellows and solves another one for digraphs in L\cal L. Our algorithms are based on the following combinatorial result which can be viewed as a generalization of many results for a `spanning tree with many leaves' in the undirected case, and which is interesting on its own: If a digraph DLD\in \cal L of order nn with minimum in-degree at least 3 contains a rooted spanning tree, then DD contains one with at least (n/2)1/51(n/2)^{1/5}-1 leaves

    Forbidden Directed Minors and Kelly-width

    Full text link
    Partial 1-trees are undirected graphs of treewidth at most one. Similarly, partial 1-DAGs are directed graphs of KellyWidth at most two. It is well-known that an undirected graph is a partial 1-tree if and only if it has no K_3 minor. In this paper, we generalize this characterization to partial 1-DAGs. We show that partial 1-DAGs are characterized by three forbidden directed minors, K_3, N_4 and M_5

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page

    Forest matrices around the Laplacian matrix

    Get PDF
    We study the matrices Q_k of in-forests of a weighted digraph G and their connections with the Laplacian matrix L of G. The (i,j) entry of Q_k is the total weight of spanning converging forests (in-forests) with k arcs such that i belongs to a tree rooted at j. The forest matrices, Q_k, can be calculated recursively and expressed by polynomials in the Laplacian matrix; they provide representations for the generalized inverses, the powers, and some eigenvectors of L. The normalized in-forest matrices are row stochastic; the normalized matrix of maximum in-forests is the eigenprojection of the Laplacian matrix, which provides an immediate proof of the Markov chain tree theorem. A source of these results is the fact that matrices Q_k are the matrix coefficients in the polynomial expansion of adj(a*I+L). Thereby they are precisely Faddeev's matrices for -L. Keywords: Weighted digraph; Laplacian matrix; Spanning forest; Matrix-forest theorem; Leverrier-Faddeev method; Markov chain tree theorem; Eigenprojection; Generalized inverse; Singular M-matrixComment: 19 pages, presented at the Edinburgh (2001) Conference on Algebraic Graph Theor
    corecore