3 research outputs found

    Security Analysis of Liu-Zhang-Deng Digital Signature Scheme

    Get PDF
    AbstractIn 2010, Liu et al. 1 proposed an improvement of Liu-Li digital signature scheme without one-way hash function and messageredundancy. In this paper, we demonstrate that Liu et al.’s scheme exist ℓ-wDH problem. Using Baby-Step Giant Step, we cancompute (mod p − 1) in o polynomial time, it is therefore insecure and can not against forgery attack

    CONSTRUCTION OF EFFICIENT AUTHENTICATION SCHEMES USING TRAPDOOR HASH FUNCTIONS

    Get PDF
    In large-scale distributed systems, where adversarial attacks can have widespread impact, authentication provides protection from threats involving impersonation of entities and tampering of data. Practical solutions to authentication problems in distributed systems must meet specific constraints of the target system, and provide a reasonable balance between security and cost. The goal of this dissertation is to address the problem of building practical and efficient authentication mechanisms to secure distributed applications. This dissertation presents techniques to construct efficient digital signature schemes using trapdoor hash functions for various distributed applications. Trapdoor hash functions are collision-resistant hash functions associated with a secret trapdoor key that allows the key-holder to find collisions between hashes of different messages. The main contributions of this dissertation are as follows: 1. A common problem with conventional trapdoor hash functions is that revealing a collision producing message pair allows an entity to compute additional collisions without knowledge of the trapdoor key. To overcome this problem, we design an efficient trapdoor hash function that prevents all entities except the trapdoor key-holder from computing collisions regardless of whether collision producing message pairs are revealed by the key-holder. 2. We design a technique to construct efficient proxy signatures using trapdoor hash functions to authenticate and authorize agents acting on behalf of users in agent-based computing systems. Our technique provides agent authentication, assurance of agreement between delegator and agent, security without relying on secure communication channels and control over an agent’s capabilities. 3. We develop a trapdoor hash-based signature amortization technique for authenticating real-time, delay-sensitive streams. Our technique provides independent verifiability of blocks comprising a stream, minimizes sender-side and receiver-side delays, minimizes communication overhead, and avoids transmission of redundant information. 4. We demonstrate the practical efficacy of our trapdoor hash-based techniques for signature amortization and proxy signature construction by presenting discrete log-based instantiations of the generic techniques that are efficient to compute, and produce short signatures. Our detailed performance analyses demonstrate that the proposed schemes outperform existing schemes in computation cost and signature size. We also present proofs for security of the proposed discrete-log based instantiations against forgery attacks under the discrete-log assumption

    Cryptography in privacy-preserving applications.

    Get PDF
    Tsang Pak Kong.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 95-107).Abstracts in English and Chinese.Abstract --- p.iiAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Privacy --- p.1Chapter 1.2 --- Cryptography --- p.5Chapter 1.2.1 --- History of Cryptography --- p.5Chapter 1.2.2 --- Cryptography Today --- p.6Chapter 1.2.3 --- Cryptography For Privacy --- p.7Chapter 1.3 --- Thesis Organization --- p.8Chapter 2 --- Background --- p.10Chapter 2.1 --- Notations --- p.10Chapter 2.2 --- Complexity Theory --- p.11Chapter 2.2.1 --- Order Notation --- p.11Chapter 2.2.2 --- Algorithms and Protocols --- p.11Chapter 2.2.3 --- Relations and Languages --- p.13Chapter 2.3 --- Algebra and Number Theory --- p.14Chapter 2.3.1 --- Groups --- p.14Chapter 2.3.2 --- Intractable Problems --- p.16Chapter 2.4 --- Cryptographic Primitives --- p.18Chapter 2.4.1 --- Public-Key Encryption --- p.18Chapter 2.4.2 --- Identification Protocols --- p.21Chapter 2.4.3 --- Digital Signatures --- p.22Chapter 2.4.4 --- Hash Functions --- p.24Chapter 2.4.5 --- Zero-Knowledge Proof of Knowledge --- p.26Chapter 2.4.6 --- Accumulators --- p.32Chapter 2.4.7 --- Public Key Infrastructure --- p.34Chapter 2.5 --- Zero Knowledge Proof of Knowledge Protocols in Groups of Unknown Order --- p.36Chapter 2.5.1 --- The Algebraic Setting --- p.36Chapter 2.5.2 --- Proving the Knowledge of Several Discrete Logarithms . --- p.37Chapter 2.5.3 --- Proving the Knowledge of a Representation --- p.38Chapter 2.5.4 --- Proving the Knowledge of d Out of n Equalities of Discrete Logarithms --- p.39Chapter 2.6 --- Conclusion --- p.42Chapter 3 --- Related Works --- p.43Chapter 3.1 --- Introduction --- p.43Chapter 3.2 --- Group-Oriented Signatures without Spontaneity and/or Anonymity --- p.44Chapter 3.3 --- SAG Signatures --- p.46Chapter 3.4 --- Conclusion --- p.49Chapter 4 --- Linkable Ring Signatures --- p.50Chapter 4.1 --- Introduction --- p.50Chapter 4.2 --- New Notions --- p.52Chapter 4.2.1 --- Accusatory Linking --- p.52Chapter 4.2.2 --- Non-slanderability --- p.53Chapter 4.2.3 --- Linkability in Threshold Ring Signatures --- p.54Chapter 4.2.4 --- Event-Oriented Linking --- p.55Chapter 4.3 --- Security Model --- p.56Chapter 4.3.1 --- Syntax --- p.56Chapter 4.3.2 --- Notions of Security --- p.58Chapter 4.4 --- Conclusion --- p.63Chapter 5 --- Short Linkable Ring Signatures --- p.64Chapter 5.1 --- Introduction --- p.64Chapter 5.2 --- The Construction --- p.65Chapter 5.3 --- Security Analysis --- p.68Chapter 5.3.1 --- Security Theorems --- p.68Chapter 5.3.2 --- Proofs --- p.68Chapter 5.4 --- Discussion --- p.70Chapter 5.5 --- Conclusion --- p.71Chapter 6 --- Separable Linkable Threshold Ring Signatures --- p.72Chapter 6.1 --- Introduction --- p.72Chapter 6.2 --- The Construction --- p.74Chapter 6.3 --- Security Analysis --- p.76Chapter 6.3.1 --- Security Theorems --- p.76Chapter 6.3.2 --- Proofs --- p.77Chapter 6.4 --- Discussion --- p.79Chapter 6.5 --- Conclusion --- p.80Chapter 7 --- Applications --- p.82Chapter 7.1 --- Offline Anonymous Electronic Cash --- p.83Chapter 7.1.1 --- Introduction --- p.83Chapter 7.1.2 --- Construction --- p.84Chapter 7.2 --- Electronic Voting --- p.85Chapter 7.2.1 --- Introduction --- p.85Chapter 7.2.2 --- Construction . --- p.87Chapter 7.2.3 --- Discussions --- p.88Chapter 7.3 --- Anonymous Attestation --- p.89Chapter 7.3.1 --- Introduction --- p.89Chapter 7.3.2 --- Construction --- p.90Chapter 7.4 --- Conclusion --- p.91Chapter 8 --- Conclusion --- p.92A Paper Derivation --- p.94Bibliography --- p.9
    corecore