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Abstract

In 2010, Liu et al. 1 proposed an improvement of Liu-Li digital signature scheme without one-way hash function and message
redundancy. In this paper, we demonstrate that Liu et al.’s scheme exist �-wDH problem. Using Baby-Step Giant Step, we can
compute a ≡ x

Ti−T j
i (mod p − 1) in O(log p · (

√
q/d)) polynomial time, it is therefore insecure and can not against forgery attack.

c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

In 2010, Liu et al. 1 enhanced the Shieh et al. 2 scheme and propose a new scheme without using one-way hash
functions or message redundancy. They used dual public key y1 and y2 based on Liu-Li signature scheme3 to protect
their data. The secondary public key y2 suppose upon on square root exponential of hard computation problem, it is
easy to calculate the output value if known the input; otherwise, it is very hard to guess input value if known the output.
In this article, we will point out the �-wDH problem4,5 in Liu et al.’s scheme, and state the vulnerability situation in
their paper. Section 2 reviews Liu et al. scheme, Section 3 describes our methodology and security analysis. The
conclusion draws in final section.

2. Review of Liu-Zhang-Deng Scheme

(Discrete Logarithm Problem, DLP)
Discrete Logarithm Problem DLP (p, g, yi) is a problem that on input a prime p and integers g, yi ∈ Z

∗
p, outputs

xi ∈ Zp−1 satisfying gxi ≡ yi (mod p) if such an xi exists. Otherwise, it outputs⊥. The above function, which outputs
⊥ if there is no solution to the query, should be expressed as DLP and the notation DLP should be used only for a
weaker function such that nothing is specified for the behavior of the function in the case when there is no solution to
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the query. (Computational Square-Root Exponent, CSRE)
Computational Square-Root Exponent CS RE(p, g, yi) is a problem that on input a prime p and integers g, yi ∈ Z

∗
p,

outputs gxi (mod p) for xi ∈ Z
∗
p−1 satisfying yi ≡ gx2

i (mod p) if such an xi exists. Otherwise, it outputs⊥. According

to the notation used in6, the above function, which outputs ⊥ if there is no solution to the query, should be expressed
as CSRE. And the notation CSRE should be used only for a weaker function such that nothing is specified for the
behavior of the function in the case when there is no solution to the query. However, since they evaluate only stronger
problems, they omit asterisk throughout the paper for the sake of simplicity.

2.1. A. System Initial Phase:

Let p be a large prime such as 1024 bits length, and g ∈ Z
∗
p is a random multiplicative generator element. Signer Ui

chooses his/her private key xi, where xi ∈ [1, p − 1], gcd(xi, p − 1) = 1 and computes the public keys

y1 ≡ gxi (mod p), (1)

y2 ≡ gx2
i (mod p). (2)

2.2. B. Signature Generation Phase:

Step 1: Ui computes
si ≡ (y2)mi (mod p) (3)

Step 2: Ui randomly selects an integer ki ∈ [1, p − 1] and computes

ri ≡ (si + mi · y−ki

1 ) (mod p) (4)

Step 3: Ui computes
ti ≡ x−1

i · (ki − ri − x−1
i · si) (mod p − 1) (5)

Step 4: Ui sends the signature (si, ri, ti) of mi to the verifier V .

2.3. C. Verification Phase:

After receiving signature (si, ri, ti), the receiver V can check the signature and recover message m′
i as follows:

Step 1: V computes
m′

i ≡ yti
2 · (ri − si) · yri

1 · gsi (mod p) (6)

Step 2: V checks whether
si ≡ (y2)mi (mod p) (7)

If it holds, V can be convinced that (si, ri, ti) is indeed the signature generated by Ui in the recovered message m′
i .

Proof.

m′
i ≡ yti

2 · (ri − si) · yri · gsi (mod p)

≡ y
x−1

i (ki−ri−x−1
i si)

2 · (ri − si) · yri
1 (mod p)

≡ y
x−1

i ki−x−1
i ri−x−1

i si

2 · mi · y−ki
1 · yri

1 · gsi (mod p)

≡ yki
1 · y−ri

1 · g−s · mi · y−ki
1 · yri

1 · gs (mod p)

≡ mi (mod p). (8)
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3. Our Methdology

Let G be an abelian group of prime order p and g a generator of G. The Discrete Logarithm (DL) Problem in G
asks to find a ∈ Zp given g and ga in G. many cryptosystem are designed on the basis of the DL problem, but most of
them have the security equivalent to a weaker variant of the DL problem rather than the DL problem itself. Two most
important weaker variants are as follows:
The Computation Diffie-Hellman (CDH) Problem. Given (g, ga, gb), compute gab.
The Decisional Diffie-Hellman (DDH) Problem. Given (g, ga, gb, gc), decide whether c = ab in Zp.
Recently, some weakened variants of the CDH problem are introduced and being used to construct cryptosystems7

for various functionalities or security without random oracles. One characteristic of these problems is to disclose
g, gα, . . . , gα

l
for the secret α and some integer l. The �-weak Diffie-Hellman (�-wDH) Problem. Given g and gα

i
in G

for i = 1, 2, . . . , �, computes g1/α. This problem was introduced by Mitsunari, Sakai, and Kasahara for traitor tracing
scheme8.

Theorem 1. Let g be an element of prime order p in an abelian group. Suppose that d is a positive divisor of p − 1.
If g, g1 := gα and gd := gα

d
are given, α can be computed in O(log p · (

√
(p − 1)/d +

√
d)) group operations using

O(max{
√

(p − 1)/d,
√

d}) memory.

Proof. Note that Z∗p is a cycle group with φ(p− 1) generators, where φ(·) is the Euler totient function. Since a random

element in Z
∗
p is a generator with probability φ(p−1)

(p−1) >
1

6 log log(p−1) , which is large enough, we can easily take a generator

of Z∗p. Let ζ0 be a generator of Z∗p. Then we can compute ζ = ζd
0 that is an element of order (p − 1)/d in Z

∗
p. Since

(αd)(p−1)/d
= 1 and ζ generates all (p − 1)/d-th roots of unity in Z

∗
p, there exists a non-negative i less than (p − 1)/d

such that αd
= ζ i. If we take d1 = �

√
(p − 1)/d	, we must have

(αd)ζ−u
= ζd1v (9)

for some 0 ≤ u, v < d1. It is equivalent to
gζ

−u

d = gζ
d1v
. (10)

We compute and store the left-hand side terms and compare them with each of right-hand side terms in Baby-Step
Giant-Step style. Note that each of terms in both side can be computed by repeated exponentiation by either ζ−1 or
ζd1 . Thus we can find all-non-negative integers u and v less than d1 satisfying equation (10) in O(d1 · log p) group
operations using O(d1) memory. For u and v which satisfies equation (10) and u+ d1v is smallest, we put k0 = u+ d1v.
Then k0 is a non-negative integers less than (p − 1)/d.
Let α = ζk

0 for 0 ≤ k ≤ p − 1. Then we have dk ≡ dk0 (mod p − 1) and so k ≡ k0 (mod p − 1)/d. There exists a

non-negative integer j less than d such that k = k0 + j(p − 1)/d. If we take d2 = �
√

d	, we must have

αζ
−u′(p−1)/d
0 = ζ

k0+d2v′(p−1)/d
0 (11)

for some 0 ≤ u′, v′ < d2. It is equivalent to

g
ζ
−u′(p−1)/d
0

1 = gζ
k0+d2v′ (p−1)/d
0 . (12)

Be the same method as above, we can find non-negative integers u′ and v′ less than d2 satisfying equation (12) in
O(d2 · log p) group operations and O(d2) memory. This completes the proof. If attacker known y2 and T (it doesn’t
matter where T=2), but does not know password xi. These are similar �-wDH issue, for this category; it easily attack
successful. The detail methodology is described as follow:

Step 1. Suppose d = gcd(T, q), d1 = �
√

q/d	, ζ ∈ [1, p − 1], 0 ≤ u, v ≤ d1,

(gxT
i )ζ

−u ≡ gζ
d1v

(mod p), (13)
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according to Baby-Step Giant-Step method to calculate the complexity O((log p) ·
√

q/d) to get a ≡ xT
i

(mod p − 1). The detail described in previously. Computes

ya
2 ≡ (gxT

i )a ≡ gxT
i xT

i ≡ gx2T
i (mod p), (14)

the attacker may fake a value T successful.

Step 2. d = gcd(Ti − T j, q) where i � j, because gx
Ti
i ≡ gx

Ti−T j
i ·xT j

i ≡ (gx
T j
i )x

Ti−T j
i ≡ y

x
Ti−T j
i

2 (mod p), the complexity is

O((log p) ·
√

q/d), we could compute a ≡ x
Ti−T j

i (mod p − 1). Thus, we can calculate the sub-exponential
value T successful.

4. Conclusion

In Liu et al.’s scheme, they assume their public key y2 on computational square-rot exponent, given a output value
if there is no solution to the query; it is a hard problem in practical computation environment. In this paper, we showed
a mathematical model that pointed out the Liu et al.’s scheme existed an algebraic structure defects, according to this
vulnerability, it can not resist �-wDH forgery attack. Therefore, the Liu et al.’s model is insecure.
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