100,460 research outputs found

    A Review on Different Video Coding Standards

    Get PDF
    Social and network computing demands effective, offering and sparing of image data, which has dependably been an incredible test. Individuals are imparting, transmitting and putting away a great many images every moment. Video coding is a process of compressing and decompressing a digital video signal. The transmission of large size video is facing limitation due to the limited bandwidth and storage capacity. The solution for this is the video compression. In video coding for compression, the basic idea is to exploit redundant data. High Efficiency Video Coding (HEVC) is currently being prepared as the newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The fundamental goal of the HEVC standardization effort is to enable significantly improved compression performance relative to existing standards. Thus, this paper reviews various standards and techniques and highlight the need for compression. DOI: 10.17762/ijritcc2321-8169.160414

    Implementation of Video Compression Standards in Digital Television

    Get PDF
    In this paper, a video compression standard used in digital television systems is discussed. Basic concepts of video compression and principles of lossy and lossless compression are given. Techniques of video compression (intraframe and interframe compression), the type of frames and principles of the bit rate compression are discussed. Characteristics of standard-definition television (SDTV), high-definition television (HDTV) and ultra-high-definition television (UHDTV) are given. The principles of the MPEG-2, MPEG-4 and High Efficiency Video Coding (HEVC) compression standards are analyzed. Overview of basic standards of video compression and the impact of compression on the quality of TV images and the number of TV channels in the multiplexes of terrestrial and satellite digital TV transmission are shown. This work is divided into six sections

    A joint motion & disparity motion estimation technique for 3D integral video compression using evolutionary strategy

    Get PDF
    3D imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. Just like any digital video, 3D video sequences must also be compressed in order to make it suitable for consumer domain applications. However, ordinary compression techniques found in state-of-the-art video coding standards such as H.264, MPEG-4 and MPEG-2 are not capable of producing enough compression while preserving the 3D clues. Fortunately, a huge amount of redundancies can be found in an integral video sequence in terms of motion and disparity. This paper discusses a novel approach to use both motion and disparity information to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression. We further propose an optimization technique based on evolutionary strategies to minimize the computational complexity of the joint motion disparity estimation. Experimental results demonstrate that Joint Motion and Disparity Estimation can achieve over 1 dB objective quality gain over normal motion estimation. Once combined with Evolutionary strategy, this can achieve up to 94% computational cost saving

    Video coding for compression and content-based functionality

    Get PDF
    The lifetime of this research project has seen two dramatic developments in the area of digital video coding. The first has been the progress of compression research leading to a factor of two improvement over existing standards, much wider deployment possibilities and the development of the new international ITU-T Recommendation H.263. The second has been a radical change in the approach to video content production with the introduction of the content-based coding concept and the addition of scene composition information to the encoded bit-stream. Content-based coding is central to the latest international standards efforts from the ISO/IEC MPEG working group. This thesis reports on extensions to existing compression techniques exploiting a priori knowledge about scene content. Existing, standardised, block-based compression coding techniques were extended with work on arithmetic entropy coding and intra-block prediction. These both form part of the H.263 and MPEG-4 specifications respectively. Object-based coding techniques were developed within a collaborative simulation model, known as SIMOC, then extended with ideas on grid motion vector modelling and vector accuracy confidence estimation. An improved confidence measure for encouraging motion smoothness is proposed. Object-based coding ideas, with those from other model and layer-based coding approaches, influenced the development of content-based coding within MPEG-4. This standard made considerable progress in this newly adopted content based video coding field defining normative techniques for arbitrary shape and texture coding. The means to generate this information, the analysis problem, for the content to be coded was intentionally not specified. Further research work in this area concentrated on video segmentation and analysis techniques to exploit the benefits of content based coding for generic frame based video. The work reported here introduces the use of a clustering algorithm on raw data features for providing initial segmentation of video data and subsequent tracking of those image regions through video sequences. Collaborative video analysis frameworks from COST 21 l qual and MPEG-4, combining results from many other segmentation schemes, are also introduced

    Side information creation for efficient Wyner-Ziv video coding: Classifying and reviewing

    Get PDF
    Video coding technologies have played a major role in the explosion of large market digital video applications and services. In this context, the very popular MPEG-x and H-26x video coding standards adopted a predictive coding paradigm, where complex encoders exploit the data redundancy and irrelevancy to 'control' much simpler decoders. This codec paradigm fits well applications and services such as digital television and video storage where the decoder complexity is critical, but does not match well the requirements of emerging applications such as visual sensor networks where the encoder complexity is more critical. The Slepian Wolf and Wyner-Ziv theorems brought the possibility to develop the so-called Wyner-Ziv video codecs, following a different coding paradigm where it is the task of the decoder, and not anymore of the encoder, to (fully or partly) exploit the video redundancy. Theoretically, Wyner-Ziv video coding does not incur in any compression performance penalty regarding the more traditional predictive coding paradigm (at least for certain conditions). In the context of Wyner-Ziv video codecs, the so-called side information, which is a decoder estimate of the original frame to code, plays a critical role in the overall compression performance. For this reason, much research effort has been invested in the past decade to develop increasingly more efficient side information creation methods. This paper has the main objective to review and evaluate the available side information methods after proposing a classification taxonomy to guide this review, allowing to achieve more solid conclusions and better identify the next relevant research challenges. After classifying the side information creation methods into four classes, notably guess, try, hint and learn, the review of the most important techniques in each class and the evaluation of some of them leads to the important conclusion that the side information creation methods provide better rate-distortion (RD) performance depending on the amount of temporal correlation in each video sequence. It became also clear that the best available Wyner-Ziv video coding solutions are almost systematically based on the learn approach. The best solutions are already able to systematically outperform the H.264/AVC Intra, and also the H.264/AVC zero-motion standard solutions for specific types of content. (C) 2013 Elsevier B.V. All rights reserved

    Video compression algorithms for HEVC and beyond

    Get PDF
    PhDDue to the increasing number of new services and devices that allow the creation, distribution and consumption of video content, the amount of video information being transmitted all over the world is constantly growing. Video compression technology is essential to cope with the ever increasing volume of digital video data being distributed in today's networks, as more e cient video compression techniques allow support for higher volumes of video data under the same memory/bandwidth constraints. This is especially relevant with the introduction of new and more immersive video formats associated with signi cantly higher amounts of data. In this thesis, novel techniques for improving the e ciency of current and future video coding technologies are investigated. Several aspects that in uence the way conventional video coding methods work are considered. In particular, the properties and limitations of the Human Visual System are exploited to tune the performance of video encoders towards better subjective quality. Additionally, it is shown how the visibility of speci c types of visual artefacts can be prevented during the video encoding process, in order to avoid subjective quality degradations in the compressed content. Techniques for higher video compression e ciency are also explored, targeting to improve the compression capabilities of state-of-the-art video coding standards. Finally, the application of video coding technologies to practical use-cases is considered. Accurate estimation models are devised to control the encoding time and bit rate associated with compressed video signals, in order to meet speci c encoding time and transmission time restrictions

    A 2D DWT architecture suitable for the Embedded Zerotree Wavelet Algorithm

    Get PDF
    Digital Imaging has had an enormous impact on industrial applications such as the Internet and video-phone systems. However, demand for industrial applications is growing enormously. In particular, internet application users are, growing at a near exponential rate. The sharp increase in applications using digital images has caused much emphasis on the fields of image coding, storage, processing and communications. New techniques are continuously developed with the main aim of increasing efficiency. Image coding is in particular a field of great commercial interest. A digital image requires a large amount of data to be created. This large amount of data causes many problems when storing, transmitting or processing the image. Reducing the amount of data that can be used to represent an image is the main objective of image coding. Since the main objective is to reduce the amount of data that represents an image, various techniques have been developed and are continuously developed to increase efficiency. The JPEG image coding standard has enjoyed widespread acceptance, and the industry continues to explore its various implementation issues. However, recent research indicates multiresolution based image coding is a far superior alternative. A recent development in the field of image coding is the use of Embedded Zerotree Wavelet (EZW) as the technique to achieve image compression. One of The aims of this theses is to explain how this technique is superior to other current coding standards. It will be seen that an essential part orthis method of image coding is the use of multi resolution analysis, a subband system whereby the subbands arc logarithmically spaced in frequency and represent an octave band decomposition. The block structure that implements this function is termed the two dimensional Discrete Wavelet Transform (2D-DWT). The 20 DWT is achieved by several architectures and these are analysed in order to choose the best suitable architecture for the EZW coder. Finally, this architecture is implemented and verified using the Synopsys Behavioural Compiler and recommendations are made based on experimental findings

    Robust and scalable matching pursuits video transmission using the Bluetooth air interface standard

    Get PDF
    This paper introduces an error resilient implementation of the matching pursuits algorithm for video coding. The video bitstream is transmitted using a simulation of the Bluetooth air interface standard, which recommends ARQ as a means of overcoming channel errors in the data packets. This approach may be unsuitable for real time and broadcast applications. Therefore, a modified receiver is proposed in this paper, which does not request the retransmission of erroneous packets, but instead passes them to the video decoder to exploit error resilience. This strategy is shown to be superior to a standard compliant system if ARQ cannot be applied. The work confirms that wireless communication standards should support a transparent mode for video applications
    • 

    corecore