390,597 research outputs found

    The Operating Diagram for a Two-Step Anaerobic Digestion Model

    Full text link
    The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its analytical study. Here, we consider the two-step reduced model of anaerobic digestion (AM2) which is a four-dimensional system of ordinary differential equations. The AM2 model is able to adequately capture the main dynamical behavior of the full anaerobic digestion model ADM1 and has the advantage that a complete analysis for the existence and local stability of its steady states is available. We describe its operating diagram, which is the bifurcation diagram which gives the behavior of the system with respect to the operating parameters represented by the dilution rate and the input concentrations of the substrates. This diagram, is very useful to understand the model from both the mathematical and biological points of view

    Bayesian hierarchical reconstruction of protein profiles including a digestion model

    Get PDF
    Introduction : Mass spectrometry approaches are very attractive to detect protein panels in a sensitive and high speed way. MS can be coupled to many proteomic separation techniques. However, controlling technological variability on these analytical chains is a critical point. Adequate information processing is mandatory for data analysis to take into account the complexity of the analysed mixture, to improve the measurement reliability and to make the technology user friendly. Therefore we develop a hierarchical parametric probabilistic model of the LC-MS analytical chain including the technological variability. We introduce a Bayesian reconstruction methodology to recover the protein biomarkers content in a robust way. We will focus on the digestion step since it brings a major contribution to technological variability. Method : In this communication, we introduce a hierarchical model of the LC-MS analytical chain. Such a chain is a cascade of molecular events depicted by a graph structure, each node being associated to a molecular state such as protein, peptide and ion and each branch to a molecular processing such as digestion, ionisation and LC-MS separation. This molecular graph defines a hierarchical mixture model. We extend the Bayesian statistical framework we have introduced previously [1] to this hierarchical description. As an example, we will consider the digestion step. We describe the digestion process on a pair of peptides within the targeted protein as a Bernoulli random process associated with a cleavage probability controlled by the digestion kinetic law.Comment: pr\'esentation orale; 59th American Society for Mass Spectrometry Conference, Dallas : France (2011

    Augmenting Biogas Process Modeling by Resolving Intracellular Metabolic Activity

    Get PDF
    The process of anaerobic digestion in which waste biomass is transformed to methane by complex microbial communities has been modeled for more than 16 years by parametric gray box approaches that simplify process biology and do not resolve intracellular microbial activity. Information on such activity, however, has become available in unprecedented detail by recent experimental advances in metatranscriptomics and metaproteomics. The inclusion of such data could lead to more powerful process models of anaerobic digestion that more faithfully represent the activity of microbial communities. We augmented the Anaerobic Digestion Model No. 1 (ADM1) as the standard kinetic model of anaerobic digestion by coupling it to Flux-Balance-Analysis (FBA) models of methanogenic species. Steady-state results of coupled models are comparable to standard ADM1 simulations if the energy demand for non-growth associated maintenance (NGAM) is chosen adequately. When changing a constant feed of maize silage from continuous to pulsed feeding, the final average methane production remains very similar for both standard and coupled models, while both the initial response of the methanogenic population at the onset of pulsed feeding as well as its dynamics between pulses deviates considerably. In contrast to ADM1, the coupled models deliver predictions of up to 1,000s of intracellular metabolic fluxes per species, describing intracellular metabolic pathway activity in much higher detail. Furthermore, yield coefficients which need to be specified in ADM1 are no longer required as they are implicitly encoded in the topology of the species’ metabolic network. We show the feasibility of augmenting ADM1, an ordinary differential equation-based model for simulating biogas production, by FBA models implementing individual steps of anaerobic digestion. While cellular maintenance is introduced as a new parameter, the total number of parameters is reduced as yield coefficients no longer need to be specified. The coupled models provide detailed predictions on intracellular activity of microbial species which are compatible with experimental data on enzyme synthesis activity or abundance as obtained by metatranscriptomics or metaproteomics. By providing predictions of intracellular fluxes of individual community members, the presented approach advances the simulation of microbial community driven processes and provides a direct link to validation by state-of-the-art experimental techniques

    Behaviour of milk protein ingredients and emulsions stabilised by milk protein ingredients in the simulated gastrointestinal tract : a thesis presented in partial fulfilment of the requirements for the degree of Master of Food Technology, Massey University, Manawatu, New Zealand

    Get PDF
    Milk clotting behaviours in the stomach impact the digestion rates of protein and fat. A variety of milk protein products are applied as functional ingredients in many foods. This research was conducted to investigate the digestion behaviours of various commercial dairy ingredients and lipids in emulsions stabilised by these ingredients using a dynamic in vitro digestion model, i.e., a human gastric simulator (HGS), with a focus on the effect of different structures of clots formed in dairy ingredients during gastric digestion on hydrolysis of proteins and/or lipids. Skim milk powder (SMP), milk protein concentrate (MPC) 4851, MPC 4861, sodium caseinate, whey protein isolate (WPI) and heated (90°C, 20 min) WPI were used in the present study. Results showed that SMP and MPC 4851, which contained casein micelles, formed ball-like clots with a relatively dense network after 10 min of gastric digestion. These clots did not disintegrate after 220 min of digestion. MPC 4861 and sodium caseinate generated clots at around 40 min, and a loose, fragmented structure was observed at the end of the gastric digestion due to a lacking micellar structure of caseins. No clot was observed in WPI or heated WPI after 220 min gastric digestion, although aggregation occurred at around 40 min in heated WPI. These differences in coagulation behaviours apparently affected the rate of gastric emptying and protein hydrolysis by pepsin in the gastric system. In SMP and MPC 4851, the gastric emptying and hydrolysis of caseins was much slower than that observed in MPC 4861 and sodium caseinate. The most rapid gastric emptying of proteins was observed in the WPI samples both with and without heating. This is attributed to the formation of varied structured clots at different times under the gastric conditions. The effect of protein concentration on the gastric behaviour of these dairy ingredients in solution was then examined, with a particular emphasis on the structure of clots. SMP and MPC 4851 have been selected as model protein ingredients. Their gastric behaviours were investigated over a protein concentration range of 0.5-5.0% (w/w). The results showed that the digestion behaviour of SMP and MPC 4851 followed a similar pattern. The rate of pH changes in the emptied digesta during digestion was protein concentration dependent. With an increase in protein concentration, the decrease in pH slowed. The protein concentration had no apparent impact on the casein clotting time. Clots were formed in the first 10 min of digestion in all samples. However, in both SMP and MPC 4851, when protein concentration was lower than 2.0% (w/w) the clots consisted of small protein pieces with a loose, porous and open structure after a 220 min digestion. Whereas a cheese ball-like clot with a denser network was observed at the end of gastric digestion when the protein concentration varied from 2.0% to 5.0% (w/w). Such a difference in the structure apparently affected the rate of protein hydrolysis. A more rapid hydrolysis (P < 0.05) of the clotted protein was observed when protein concentration was lower than 2.0% (w/w) compared to the samples containing a higher proportion of protein (2.0%-5.0%, w/w). To study the effect of different coagulation behaviours on the digestion of oil droplets in oil-in-water emulsions, these dairy ingredients (with the exception of SMP) were used to prepare an oil-in-water emulsion (20.0% soy oil and 4.0% protein, w/w). They were digested under the dynamic gastric conditions using the HGS. The gastric digesta was emptied at 20 min intervals. Then all digesta were mixed to investigate the lipid digestion under the small intestinal conditions. Changes in physicochemical properties of emulsions, involving the particle size, the microstructure, the oil content of the emptied gastric digesta and the amount of free fatty acids (FFAs) released during the small intestine stage, were determined using an in vitro small intestinal digestion model. Aggregation of MPC 4851-stabilised emulsion took place after 5 min of digestion in the HGS with the largest size. The aggregates remained in the stomach and did not disappear during the whole gastric digestion. The hydrolysis of the aggregated network by pepsin was largely slowed by the reduced ability of the simulated gastric fluid (SGF, containing pepsin) to diffuse into the larger sized aggregates. MPC 4851-stabilised emulsion thus resulted in the slowest release of oil droplets into the small intestine. In comparison, MPC 4861 and sodium caseinate-stabilised emulsions aggregated in the stomach at approximately 40 min, forming smaller sized aggregates. These aggregates disintegrated at the mid and late-stages of digestion in these two emulsions. Therefore, MPC 4861 and sodium caseinate-stabilised emulsions had a more rapid delivery of oil droplets into the small intestine. In relation to the WPI-stabilised emulsions both with and without heating, the aggregations formed at a similar time to that which was observed in MPC 4861 and sodium caseinate-stabilised-emulsions; i.e., at approximately 40 min. However, they had the smallest sized aggregates amongst all samples and they disintegrated quickly with further digestion. WPI-stabilised emulsions both with and without heating had the fastest gastric emptying and hydrolysis by pepsin in the early and mid-stages of the gastric digestion process. Thus, the highest level of oil content contained in the emptied gastric digesta was produced from both WPI-stabilised emulsions. In the mixed gastric digesta, which were subjected to the small intestinal digestion, the oil contents contained in the different emulsion samples varied. This difference impacted the extent of lipid digestion by pancreatic lipase. The sample with a higher oil content released a greater amount of FFAs compared to the sample with a lower oil content. The extent of lipid digestion of different emulsion samples adhered to the following pattern: MPC 4851-stabilised emulsion < MPC 4861-stabilised emulsion < sodium caseinate-stabilised emulsion, WPI-stabilised emulsions both with and without heating. Overall, the gastric behaviours of dairy ingredients either in solutions or emulsions were affected by the formation of structured clots/aggregates. The differences in clotting/aggregation times and their structures were greatly dependent on the component and structure of protein, the processing prior to digestion and the susceptibility to proteases. These differences in protein coagulation/aggregation behaviour impacted the rates of protein hydrolysis and gastric emptying. The oil content and protein composition of the gastric digesta transferred into small intestine and the extent of lipid digestion in small intestine were also affected. These results are important in an application perspective. They provide useful information for the design and development of healthier food products by allowing greater control over the manipulation of protein bioavailability, which subsequently provides greater control over lipid metabolism

    Mathematical Modeling of Transport and Degradation of Feedstuffs in the Small Intestine

    Get PDF
    We describe a mathematical modeling of the digestion in the small intestine. The main interest of our work is to consider, at the same time, different aspects of the digestion i.e. the transport of the bolus all along the intestine, feedstuffs degradation according to the enzymes and local physical conditions, and nutrients absorption. A system of coupled ordinary differential equations is used to model these phenomena. The major unknowns of this system are the position of the bolus and its composition. This system of equations is solved numerically. We present different numerical computations for the degradation, absorption and transport of the bolus with acceptable accuracy with experimental data. The main feature and interest of this model are its generality. Even if we are at an early stage of development, our approach can be adapted to treat any kind of feedstuffs in any non-ruminant animal to predict the composition and velocity of bolus in the small intestine

    Towards quantitative prediction of proteasomal digestion patterns of proteins

    Full text link
    We discuss the problem of proteasomal degradation of proteins. Though proteasomes are important for all aspects of the cellular metabolism, some details of the physical mechanism of the process remain unknown. We introduce a stochastic model of the proteasomal degradation of proteins, which accounts for the protein translocation and the topology of the positioning of cleavage centers of a proteasome from first principles. For this model we develop the mathematical description based on a master-equation and techniques for reconstruction of the cleavage specificity inherent to proteins and the proteasomal translocation rates, which are a property of the proteasome specie, from mass spectroscopy data on digestion patterns. With these properties determined, one can quantitatively predict digestion patterns for new experimental set-ups. Additionally we design an experimental set-up for a synthetic polypeptide with a periodic sequence of amino acids, which enables especially reliable determination of translocation rates.Comment: 14 pages, 4 figures, submitted to J. Stat. Mech. (Special issue for proceedings of 5th Intl. Conf. on Unsolved Problems on Noise and Fluctuations in Physics, Biology & High Technology, Lyon (France), June 2-6, 2008

    The Swedish Penal Code of 1965

    Get PDF
    Colombo City is the commercial capital of Sri Lanka with an estimated resident population of over 750,000 spread over 3741 hectares (ha) and has a population density over 1188 per ha. It is located in the western coast of Sri Lanka and is in wet zone. The topography is of flat terrain with a mix of land and water. Considering the population and the limited undeveloped land available, the disposal of Municipal Solid Waste (MSW) and Sewer is a major environmental problem in Colombo. The major object of this thesis is to identify and evaluate a productive waste management system that is not only environmental friendly but also sustainable and cost effective. In this context, as a sustainable technology, applicability of anaerobic digestion is investigated and methane generation potential of the waste is evaluated. In order to identify a sustainable waste management system, the quantity of waste generated within the city of Colombo is identified. The current practices of disposal of these wastes are then reviewed to identify any issues regarding its sustainability. The majority of the MSW is currently disposed as open landfill that is causing pollution of waterways, with its leachate, as well as the polluting the atmosphere around it with its bad odour. The sewer is discharged to sea or disposed via a self-contained soakage pit. Except for few small-scale anaerobic digestion plants that use solid waste for generation of biogas for localized use, there is no large-scale waste to energy projects in operation in Sri Lanka. The sewer is not used productively at all. Having identified the quantity of waste and the disposal methods practiced, the priority is to identify sustainable and productive methods of disposal of wastes that suits best the local conditions. With this in view research hitherto carried out are studied and available literature is reviewed. The objective is to ascertain the processes that productively harness the energy potential of MSW and Sewer, individually or in combination. There are many physical and chemical methods for treatment of wastes. However bioconversion of waste provides the best options for tapping the energy of the wastes. Of the two main bioconversion methods aanaerobic processes exhibit many advantages over aerobic digestion with its ability of handling high organic loading rates and low sludge production. However, the reason for the increase in applications of anaerobic processes, is, its potential for production of energy using the biogas generated. The methane so produced can replace fossil fuel and therefore has a direct positive effect on greenhouse gas reduction. Therefore, compared with other bioconversion technologies for treatment of MSW and sewer/wastewater, the energy and environment benefits make anaerobic digestion an attractive option. Anaerobic treatment of waste in an engineered landfill bioreactor is found to be the best option for treatment of MSW. Whilst providing a decrease in long term environmental risks and low operational and closure costs it provides with valuable energy source in generation of methane. As for sewer generation of methane in anaerobic processes can be enhanced with co-digestion of different types of waste suitably selected. In this regard co-digestion of sewer and wastewater with food waste is found to be productive and is applied in this study. Literature review is carried out to determine suitable models to predict the methane generation potential. The "First Order Decay Model" is identified as the appropriate model for prediction of methane from MSW in landfills. The "Anaerobic Digestion Model No.1" is applied for prediction of methane from sewer and waste water. Chemical composition of MSW is the primary parameter which affects the methane generation. The chemical composition is computed applying the ultimate analysis and using a stoichiometric based approach. For sewer and waste water the basic parameters of BOD and COD concentrations are available from data gathered. Apart from these two parameters the other parameters relevant to local conditions are not available. Therefore values that closely fit the local conditions are taken from the literature. The study determines the methane generation potential of MSW approximately 2.1 x 106 m3 per annum and anaerobic co-digestion of sewer and food substrates generate 9.1 x 106 m3 per annum. If parameters could be determined for the wastes generated locally the accuracy of the methane generation potential could be further enhanced. In this context, further studies, should be directed from the conventional landfills to "Anaerobic Bioreactor Controlled" landfill, where circulation of liquids including leachate is carried out to increase the biogas yield. For sewer the focus should be on the most economical foot print of parallel banks of number of continuous-flow stirred-tank reactors (CSTR) operating in series to accommodate the total flow rate of sewer

    The Financial Feasibility of Anaerobic Digestion for Ontario's Livestock Industries

    Get PDF
    This report is an investigation of the financial feasibility of farm based anaerobic digestion investments under Ontario's Standard Offer Contract electricity prices. Using Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) Agricultural Anaerobic Digestion Calculation Spreadsheet (AADCS) anaerobic digestion inputs, outputs, cost and revenues were estimated and used to conduct a financial analysis on the feasibility of four sized farm base anaerobic digestion investments. The results suggest investment in an anaerobic digestion system smaller than 300 kilo-watts is not financially feasible under the chosen base model assumptions and Ontario's Standard Offer Contract. The efficiency of the anaerobic digestion systems,discussed in the report as electricity yield, was found to have the largest impact on the investments financial feasibility. Incorporating off-farm organic material improved financial feasibility by increasing biogas production and offering the potential for tipping fee revenue.Livestock Production/Industries,
    corecore