1,796 research outputs found

    Diffusiophoresis in non-adsorbing polymer solutions: the Asakura-Oosawa model and stratification in drying films

    Get PDF
    A colloidal particle placed in an inhomogeneous solution of smaller non-adsorbing polymers will move towards regions of lower polymer concentration, in order to reduce the free energy of the interface between the surface of the particle and the solution. This phenomenon is known as diffusiophoresis. Treating the polymer as penetrable hard spheres, as in the Asakura-Oosawa model, a simple analytic expression for the diffusiophoretic drift velocity can be obtained. In the context of drying films we show that diffusiophoresis by this mechanism can lead to stratification under easily accessible experimental conditions. By stratification we mean spontaneous formation of a layer of polymer on top of a layer of the colloid. Transposed to the case of binary colloidal mixtures, this offers an explanation for the stratification observed recently in these systems [A. Fortini et al, Phys. Rev. Lett. 116, 118301 (2016)]. Our results emphasise the importance of treating solvent dynamics explicitly in these problems, and caution against the neglect of hydrodynamic interactions or the use of implicit solvent models in which the absence of solvent backflow results in an unbalanced osmotic force which gives rise to large but unphysical effects.Comment: 11 pages, 6 figure

    The dynamics of a self-phoretic Janus swimmer near a wall

    Get PDF
    We study the effect of a nearby planar wall on the propulsion of a phoretic Janus micro-swimmer driven by asymmetric reactions on its surface which absorb reactants and generate products. We show that the behaviour of these swimmers near a wall can be classified based on whether{\bf based \ on \ whether} the swimmers are mainly{\bf mainly} absorbing or producing reaction solutes and whether{\bf and \ whether} their swimming directions are such that the inert or active face is at the front. We find that the wall-induced solute gradients always promote swimmer propulsion along the wall while the effect of hydrodynamics leads to re-orientation of the swimming direction away from the wall.Comment: 6 pages, 6 figure

    How a "pinch of salt" can tune chaotic mixing of colloidal suspensions

    Full text link
    Efficient mixing of colloids, particles or molecules is a central issue in many processes. It results from the complex interplay between flow deformations and molecular diffusion, which is generally assumed to control the homogenization processes. In this work we demonstrate on the contrary that despite fixed flow and self-diffusion conditions, the chaotic mixing of colloidal suspensions can be either boosted or inhibited by the sole addition of trace amount of salt as a co-mixing species. Indeed, this shows that local saline gradients can trigger a chemically-driven transport phenomenon, diffusiophoresis, which controls the rate and direction of molecular transport far more efficiently than usual Brownian diffusion. A simple model combining the elementary ingredients of chaotic mixing with diffusiophoretic transport of the colloids allows to rationalize our observations and highlights how small-scale out-of-equilibrium transport bridges to mixing at much larger scales in a very effective way. Considering chaotic mixing as a prototypal building block for turbulent mixing, this suggests that these phenomena, occurring whenever the chemical environment is inhomogeneous, might bring interesting perspective from micro-systems up to large-scale situations, with examples ranging from ecosystems to industrial contexts.Comment: Submitte

    On phoretic clustering of particles in turbulence

    Full text link
    We demonstrate that diffusiophoretic, thermophoretic and chemotactic phenomena in turbulence lead to clustering of particles on multi-fractal sets that can be described using one single framework, valid when the particle size is much smaller than the smallest length scale of turbulence l0l_0. To quantify the clustering, we derive positive pair correlations and fractal dimensions that hold for scales smaller than l0l_0. Statistics of the number of particles in a small volume are non-Poissonian manifesting deviations from the case of uncorrelated particles. For scales larger than l0l_0 we predict a stretched exponential decay to 1 of the pair correlation function. For the case of inhomogeneous turbulence we find that the fractal dimension depends on the inhomogeneous direction. By performing experiments of clustering of diffusiophoretic particles induced by salinity gradients in a turbulent gravity current we demonstrate clustering in conformity to the theory. The particle size in the experiment is comparable to l0l_0, outside the strict validity region of the theory, suggesting that the theoretical predictions transfer to this practically relevant regime. This clustering mechanism can provide the key to the understanding of a multitude of processes such as formation of marine snow in the ocean and population dynamics of chemotactic bacteria

    Colloidal motility and pattern formation under rectified diffusiophoresis

    Full text link
    In this letter, we characterize experimentally the diffusiophoretic motion of colloids and lambda- DNA toward higher concentration of solutes, using microfluidic technology to build spatially- and temporally-controlled concentration gradients. We then demonstrate that segregation and spatial patterning of the particles can be achieved from temporal variations of the solute concentration profile. This segregation takes the form of a strong trapping potential, stemming from an osmotically induced rectification mechanism of the solute time-dependent variations. Depending on the spatial and temporal symmetry of the solute signal, localization patterns with various shapes can be achieved. These results highlight the role of solute contrasts in out-of-equilibrium processes occuring in soft matter
    corecore