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Abstract The purpose of this paper is to explore, from a theoretical viewpoint, the mechanisms whereby
locomotion of low-Reynolds-number organisms and particles is affected by the presence of nearby no-slip
surfaces and free capillary surfaces. First, we explore some simple models of the unsteady dynamics of low-
Reynolds-number swimmers near a no-slip wall and driven by an arbitrarily imposed tangential surface slip.
Next, the self-diffusiophoresis of a class of two-faced Janus particles propelled by the production of gradients in
the concentration of a solute diffusing into a surrounding fluid at zero Reynolds and Péclet numbers is studied,
both in free space and near a no-slip wall. The added difficulty now is that the tangential slip is not arbitrarily
chosen but is given by the solution of a separate boundary value problem for the solute concentration. Finally,
an analysis of a model system is used to identify a mechanism whereby a non-self-propelling swimmer can
harness the effects of surface tension and deformability of a nearby free surface to propel itself along it. The
challenge here is that it is a free boundary problem requiring determination of the surface shape as part of the
solution.
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1. Introduction

An important technological challenge, for
drug-delivery systems and in micromechanics,
is to develop ways to enable small-scale ob-
jects to perform autonomous controlled motion.
A promising route for producing such artificial
microswimmers, or “nanomotors”, is to endow
a particle of fixed shape with anisotropically
patterned physico-chemical properties. Among
the many examples are so-called Janus col-
loids which are chemically reactive beads or
rods consisting of one of more portions of their
boundaries, or “faces”, having different chem-
ical, electrical or thermomechanical properties.
These particles take advantage of self-phoretic
effects where gradients of solute concentration,
electric or temperature fields interact with the
particle’s surface properties to create slip ve-
locities that lead to net propulsion and rota-
tion by virtue of the constraints that the par-
ticle is free of any net force or torque. On
the other hand, micro-organisms or biological
“swimmers”, such as bacteria, can propel them-

selves in a qualitatively similar manner by us-
ing the concerted action of surface-based cilia
to produce a net surface slip velocity (or a sur-
face stress).

2. Wall-bounded motion

There has been much recent interest in the ef-
fect of no-slip walls on the dynamics of low-
Reynolds-number organisms. For example, the
motility of sperm has been of particular in-
terest and many investigators have been inter-
ested in assessing how the vicinity of nearby
walls can affect it. In this spirit, simple math-
ematical models based on singularity theory for
Stokes flows have been devised to explain the
dynamics – observed both experimentally and
by means of numerical simulations – of a class
of artificial “swimmers” made up of networks
of rotating spheres connected by rigid rods.
While it is common to model a low-Reynolds-
number swimmer as a stresslet singularity, a
key observation of the work of Crowdy & Or
[Phys. Rev. E, 81, 036313, (2010)] is to iden-
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Figure 1: A circular swimmer translating with
complex speed U and rotating with angular ve-
locity Ω near a no-slip wall. The interior of
the annulus ρ < |ζ | < 1 (shown right) is trans-
planted, under the mapping z(ζ ) given in (5), to
the fluid region in the z-plane above the no-slip
wall and outside the moving swimmer. Points
labelled with the same letter correspond under
the mapping (5).

tify the important role played by the irrotational
quadrupole singularity contribution. Although
it is of higher order than the stresslet, and so
generally expected to be less important, it is
found to play a decisive role in promoting lo-
comotion along a wall. Indeed they show that
while a pure point stresslet will simply crash
into a wall, a superposition of a stresslet with
an irrotational quadrupole can lead to nonlinear
periodic orbits involving net locomotion along
the wall direction.

The idea of posing a singularity distribution
comprising a stresslet-quadrupole combination
was inspired by asking about the far-field ef-
fective singularity distribution associated with a
purely circular swimmer with a certain imposed

tangential velocity distribution. This imposed
tangential slip is intended to emulate the effect
of the concerted motion of cilia on the swimmer
surface. Crowdy & Or chose to study a par-
ticular tangential slip velocity that would lead
to no net locomotion of the swimmer if in free
space, away from any walls; that way, they iso-
lated the net effect of the presence of the wall
on the swimmer locomotion. Having found the
far-field singularity description associated with
such a swimmer, they determined the motion of
such a stresslet-quadrupole singularity combi-
nation near a wall and found excellent qualita-
tive agreement with experiments and numerical
simulations.

It was discovered, in later work [Crowdy, Int.
J. Nonlin. Mech., 46, (2011)], that the prob-
lem of a circular swimmer with an arbitrary im-
posed tangential velocity can in fact be solved
in closed analytical form without any need to
approximate the swimmer by an effective sin-
gularity description. This remarkable analytical
discovery resulted from combining two mathe-
matical ideas: the reciprocal theorem of Stokes
flow, and a known exact solution for the so-
called “dragging problem” for a rigid circular
cylinder near a wall. These new analytical in-
sights have prompted further investigations into
how more complex swimmer types evolve near
a nearby no-slip wall.

3. Mathematical results

A key ingredient for our analysis is a com-
plex variable formulation, and use of confor-
mal mapping techniques. These mathematical
ideas are largely ignored by the low-Reynolds-
number community, but they are nevertheless
relevant to two-dimensional Stokes flow mod-
elling and have enormous technical advantages.
In two dimensions it is known that an incom-
pressible Stokes flow is describable in terms of
a streamfunction ψ which satisfies the bihar-
monic equation

∇
4
ψ = 0. (1)

Complex analysis enters the analysis on notic-
ing that the general solution of (1) can be writ-

- 2 -



4th Micro and Nano Flows Conference

UCL, London, UK, 7-10 September 2014

ten as
ψ = Im[z f (z)+g(z)], (2)

where f (z) and g(z) are two functions that are
analytic functions of z = x+ iy in the fluid re-
gion. These two so-called Goursat functions are
determined by the boundary conditions on the
flow. For a solid wall, these are no-slip condi-
tions taking the form

− f (z)+ z f ′(z)+g′(z) = 0, on the wall. (3)

The usual fundamental singularities of Stokes
flows, such as the stokeslet, stresslets and
rotlets, now manifest themselves as isolated sin-
gularities of these two analytic functions. For
example, as shown by Crowdy & Or , a point
stresslet of complex strength λ , say, at a point
z0 requires that, near this point, f (z) and g′(z)
have the local form

f (z) =
λ

z− z0
+ locally analytic,

g′(z) =
λ z0

(z− z0)2 + locally analytic.
(4)

Conformal mapping theory can also aid the
analysis. For motion near an infinite straight
wall it is convenient to consider a preimage do-
main comprising the concentric annulus ρ <
|ζ | < 1 in a parametric ζ -domain. The confor-
mal mapping of this region to the doubly con-
nected fluid region exterior to a circular swim-
mer near to – but not touching – a plane wall is
given by the linear-fractional mapping

z(ζ ) = iR
[

ζ +1
ζ −1

]
(5)

where both parameters R and ρ depend on the
radius of the swimmer s and its distance d from
the wall according to

ρ =
d
s
−

√(
d
s

)2

−1,

R = d
[

ρ2−1
ρ2 +1

]
.

(6)

Figure 1 shows a schematic illustrating the fluid
domain and the preimage ζ annulus.

Suppose a smooth tangential velocity profile
imposed on the boundary of the particle (i.e. on
|ζ |= ρ) has the form

bnζ
n +bn

ρ2n

ζ n , n≥ 0 (7)

for some complex coefficient bn. This quantity
is real on |ζ |= ρ and it is important to note that
any smooth imposed tangential velocity field
can be represented as an infinite sum of such
terms – the result is just the Laurent expansion
of the velocity profile valid on |ζ |= ρ . On use
of the reciprocal theorem, and computation of
the resulting integrals by means of the residue
theorem, we find the remarkable result that

(U ′,V ′,Ω′) =



(0,0,−b0/s), (n = 0)(
ρRe[b1],−

ρ(1−ρ2)

(1+ρ2)
Im[b1],

− 2ρ2

s(1+ρ2)
Re[b1]

)
,(n = 1)

(0,0,0), (n > 1).
(8)

Therefore, only the two modes with n = 0 and
1 of the tangential velocity profile, expressed as
a Laurent expansion in ζ , lead to any nontrivial
particle velocities U ′,V ′ and Ω′ with the n = 0
term serving only to alter the particle’s angular
velocity. We believe this observation is signifi-
cant. Mathematically it means that, for an arbi-
trary imposed tangential slip, only its projection
onto these two modes are relevant to its locomo-
tive properties.

4. Janus particle models

We now give details of a theoretical inves-
tigation of the self-diffusiophoresis of a class
of two-faced, two-dimensional Janus particles
propelled by the production of gradients in the
concentration of a solute diffusing into a sur-
rounding fluid at zero Reynolds and Pclet num-
bers. Those concentration gradients produce a
tangential boundary slip resulting in translation
and rotation of the particle, as a consequence of
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the fact that it is free of both force and torque.
Mathematically, the additional complication is
that it is now necessary to simultaneously solve
a boundary value problem for the solute con-
centration and then couple it to the Stokes flow
problem.

Our model Janus particle as an isolated two-
faced circular particle which is a zero net source
of solute; that solute diffuses around the particle
at zero Péclet number with diffusion coefficient
D. Let the solute concentration exterior to the
particle be denoted by c(x,y). In the zero Péclet
number limit the boundary value problem for
c(x,y) is to solve Laplace’s equation

∇
2c = 0 (9)

outside the particle with the Neumann boundary
condition

−D n.∇c = A, (10)

where D is the diffusion coefficient and A is
the local surface activity. Positive values of
surface activity A correspond to solute emitting
surfaces. We assume that there is no solute in
the far-field. The particle is situated in fluid of
viscosity µ assumed to be in the zero Reynolds
number régime. Once the solute concentration
has been found from the above boundary value
problem the local phoretic slip velocity us on
the boundary is

us = M(I−nn).∇c, (11)

where M is the surface mobility, and it is this
surface velocity that will drive a local Stokes
flow around the particle. We therefore under-
stand that, unlike the swimmer problems con-
sidered previously where the tangential surface
slip was simply imposed arbitrarily, now the
tangential slip is given by the solution of an-
other boundary value problem.

We make the special choice of piecewise con-
stant surface activity A and mobility M given by

(A,M) =

{
(A1,M1), on C1,
(A2,M2), on C2,

(12)

where Ai,Mi for i = 1,2 are constants; the por-
tion of the boundary with arg[z] ∈ [−θ ,θ ] is de-
noted by C1 while the remainder of the bound-
ary is C2 as shown in Figure 2.

A natural first step is to consider such a swim-
mer in isolation (away from any walls). We
analyze this case and show that if the particle
is actuated by a ratio r of its surface having
uniform surface mobility M1 and surface activ-
ity A1, with the remainder having mobility M2,
then the (reduced) particle speed is

U
U0

=−sinπr
π

[
r+λ (1− r)

1− r

]
, (13)

where

U0 =
A1M1

D
, λ =

M2

M1
. (14)

The direction of travel is shown in Figure 2.
Notice already that the locomotion speed is a
complicated nonlinear function of the ratio r.
The mathematical details here are complicated
by the presence of discontinuities in the sur-
face properties, and these have to be properly
accounted for. But, again, complex variable
methods can be used to find the explicit results
above.

Confinement effects are then investigated by
placing the same Janus particle just described
near a straight no-slip wall. The mathematical
difficulties associated with discontinuities in the
surface properties have to be accounted for, but,
in combination with the result (8) cited above,
it has been found that the governing nonlinear
dynamical system can be established in com-
pletely explicit form. The resulting nonlinear
system is used to study how the geometry, loca-
tion and orientation of the particle relative to the
wall affect its motion. It is found that if the par-
ticles do not hit the wall in finite time they are
eventually repelled away from it. In particular,
no steadily translating or periodic orbits along
the wall could be found suggesting that it is un-
likely that such swimmers will be able to move
along the wall.

D.G. Crowdy, Wall effects on self-
diffusiophoretic Janus particles: a theoretical
study, J. Fluid Mech., 735, 473-498, (2013).

5. Motion near a free surface

Other types of low-Reynolds-number swim-
mers have been found to locomote parallel to
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Figure 2: A circular Janus particle C1 occupy-
ing r = θ/π of the surface and C2 (the thick line
portion) occupying the remainder. Its locomo-
tion speed is given in (13) as a function of r and
surface mobility ratio λ .

free surfaces. What is surprising here is that,
unlike no-slip surfaces, free surfaces cannot
support any shear stress so the way in which
an organism makes use of the nearby surface
to assist its locomotion must be fundamentally
different. We have attempted to investigate this
using the same two-dimensional models already
discussed in the context of no-slip walls.

The analysis is, however, significantly more
complicated owing to the deformation of the
free surface: it is a free boundary problem re-
quiring that the shape of the free surface be de-
termined as part of the solution. Given this dif-
ficulty we have only investigated the existence
of possible steady states in which the swimmer
is travelling uniformly at constant speed in the
direction parallel to the undisturbed free sur-
face. Moreover, given these complications with
the free surface, it is natural to resort back to a
singularity model of the swimmer comprising
a stresslet and superposed quadrupole (rather
than thinking of a circular swimmer with an im-
posed tangential slip).

Similar mathematical techniques based on
complex analysis are useful here too. By adapt-
ing mathematical techniques used by Jeong &
Moffatt [J. Fluid Mech., 241, (1992)] to study
free surface cusps induced by counter-rotating
rollers, we have been able to analyze this prob-
lem and find the required steadily translating

fluid
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interface

z
d fluid

interface
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1zd

s

Figure 3: Model of a swimmer, as a point singu-
larity at zd , beneath a deformable free surface.

state in terms of closed form formulas. The
methods again rest on strategic use of a complex
variable formulation of the Stokes flow prob-
lem with conformal mapping theory used to de-
scribe deformation of the free surface. Owing to
the fact that the swimmer is modelled as a sin-
gularity at a single point, without any spatial ex-
tent, the fluid region is now simply connected,
implying that the required conformal mapping
function can be taken from the unit disc, rather
than the doubly connected annulus (i.e. this
is the limit ρ → 0 for the preimage ζ annulus
shown in Figure 1). This affords a major sim-
plication since now the flow is bounded only by
the free surface with a point singularity sitting
in the fluid region at some point zd beneath it.
Figure 3 shows a schematic.

A non-zero surface tension T is taken to be
active on the free surface and, in this case, the
statement of the stress balance on the free sur-
face takes the modified form

f (z)+ z f ′(z)+g′(z) =
iT
2

dz
ds

, on the surface,
(15)

where s denotes arclength along the free sur-
face as shown in Figure 3. This relation de-
termines the unknown Goursat functions f (z)
and g(z). In this case, a non-dimensional capil-
lary number Ca can be defined that governs the
balance between surface tension and viscous ef-
fects generated by the local motion induced by
the swimmer. By virtue of an asymptotic analy-
sis of the system as Ca→ 0, a new mechanism
of locomotion is identified. Its origin is a sub-
tle balance of surface tension and free surface
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deformation.

Full details of this analysis have been published
in:
D.G. Crowdy, S. Lee, O. Samson, E. Lauga and
A.E. Hosoi, A two-dimensional model of low-
Reynolds number swimming beneath a free sur-
face, J. Fluid. Mech., 681, 24-47, (2011).
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