16,960 research outputs found

    Fractal Generalized Zone Plates

    Get PDF
    The construction of fractal generalized zone plates (FraGZPs) from a set of periodic diffractive optical elements with circular symmetry is proposed. This allows us to increase the number of foci of a conventional fractal zone plate (FraZP), keeping the self-similarity property within the axial irradiance. The focusing properties of these fractal diffractive optical elements for points not only along but also in the close vicinity of the optical axis are investigated. In both cases analytical expressions for the irradiance are derived. Numerical simulations of the energetic efficiency of FraGZPs under plane wave illumination are carried out. In addition, some effects on the axial irradiance caused by the variation in area of their transparent rings are shown.Comment: Submitted to Optics Express, 200

    Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles

    Get PDF
    The angular response of thin diffractive optical elements is highly correlated. For example, the angles of incidence and diffraction of a grating are locked through the grating momentum determined by the grating period. Other diffractive devices, including conventional metasurfaces, have a similar angular behavior due to the fixed locations of the Fresnel zone boundaries and the weak angular sensitivity of the meta-atoms. To alter this fundamental property, we introduce angle-multiplexed metasurfaces, composed of reflective high-contrast dielectric U-shaped meta-atoms, whose response under illumination from different angles can be controlled independently. This enables flat optical devices that impose different and independent optical transformations when illuminated from different directions, a capability not previously available in diffractive optics

    Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics

    Get PDF
    open5openGIANLUCA RUFFATO, 1; FILIPPO ROMANATO, ; 1Department of Physics and Astronomy ‘G. Galilei’, University of Padova; 2Laboratory for Nanofabrication of Nanodevices, c.so Stati Uniti 4GIANLUCA RUFFATO, 1; Romanato, Filippo; Ruffato, Gianluca; Astronomy ‘. G. Galilei’, University of Padova; 2Laboratory for Nanofabrication of Nanodevices, c. so Stati Uniti

    Multiwavelength Achromatic Metasurfaces by Dispersive Phase Compensation

    Full text link
    The replacement of bulk refractive optical elements with diffractive planar components enables the miniaturization of optical systems. However, diffractive optics suffers from large chromatic aberrations due to the dispersion of the phase accumulated by light during propagation. We show that this limitation can be overcome with an engineered wavelength-dependent phase shift imparted by a metasurface and demonstrate a design that deflects three wavelengths without dispersion. A planar lens without chromatic aberrations at three wavelengths is also presented. Our design is based on low-loss dielectric resonators which introduce a dense spectrum of optical modes to enable dispersive phase compensation. The suppression of chromatic aberrations in metasurface-based planar photonics will find applications in lightweight collimators for displays, and chromatically-corrected imaging systems

    Neutron optical beam splitter from holographically structured nanoparticle-polymer composites

    Full text link
    We report a breakthrough in the search for versatile diffractive elements for cold neutrons. Nanoparticles are spatially arranged by holographical means in a photopolymer. These grating structures show remarkably efficient diffraction of cold neutrons up to about 50% for effective thicknesses of only 200 micron. They open up a profound perspective for next generation neutron-optical devices with the capability to tune or modulate the neutron diffraction efficiency.Comment: 4 pages, 2 figure

    Orbital angular momentum 25 years on [invited]

    Get PDF
    Twenty-five years ago Allen, Beijersbergen, Spreeuw, and Woerdman published their seminal paper establishing that light beams with helical phase-fronts carried an orbital angular momentum. Previously orbital angular momentum had been associated only with high-order atomic/molecular transitions and hence considered to be a rare occurrence. The realization that every photon in a laser beam could carry an orbital angular momentum that was in excess of the angular momentum associated with photon spin has led both to new understandings of optical effects and various applications. These applications range from optical manipulation, imaging and quantum optics, to optical communications. This brief review will examine some of the research in the field to date and consider what future directions might hold
    corecore