1,659 research outputs found

    Differentially Private Exponential Random Graphs

    Full text link
    We propose methods to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network. Proposed techniques aim at fitting and estimating a wide class of exponential random graph models (ERGMs) in a differentially private manner, and thus offer rigorous privacy guarantees. More specifically, we use the randomized response mechanism to release networks under ϵ\epsilon-edge differential privacy. To maintain utility for statistical inference, treating the original graph as missing, we propose a way to use likelihood based inference and Markov chain Monte Carlo (MCMC) techniques to fit ERGMs to the produced synthetic networks. We demonstrate the usefulness of the proposed techniques on a real data example.Comment: minor edit

    Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models

    Get PDF
    Motivated by a real-life problem of sharing social network data that contain sensitive personal information, we propose a novel approach to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network while maintaining the validity of statistical results. A case study using a version of the Enron e-mail corpus dataset demonstrates the application and usefulness of the proposed techniques in solving the challenging problem of maintaining privacy \emph{and} supporting open access to network data to ensure reproducibility of existing studies and discovering new scientific insights that can be obtained by analyzing such data. We use a simple yet effective randomized response mechanism to generate synthetic networks under ϵ\epsilon-edge differential privacy, and then use likelihood based inference for missing data and Markov chain Monte Carlo techniques to fit exponential-family random graph models to the generated synthetic networks.Comment: Updated, 39 page

    Publishing Community-Preserving Attributed Social Graphs with a Differential Privacy Guarantee

    Get PDF
    We present a novel method for publishing differentially private synthetic attributed graphs. Unlike preceding approaches, our method is able to preserve the community structure of the original graph without sacrificing the ability to capture global structural properties. Our proposal relies on C-AGM, a new community-preserving generative model for attributed graphs. We equip C-AGM with efficient methods for attributed graph sampling and parameter estimation. For the latter, we introduce differentially private computation methods, which allow us to release community-preserving synthetic attributed social graphs with a strong formal privacy guarantee. Through comprehensive experiments, we show that our new model outperforms its most relevant counterparts in synthesising differentially private attributed social graphs that preserve the community structure of the original graph, as well as degree sequences and clustering coefficients

    Private Graph Data Release: A Survey

    Full text link
    The application of graph analytics to various domains have yielded tremendous societal and economical benefits in recent years. However, the increasingly widespread adoption of graph analytics comes with a commensurate increase in the need to protect private information in graph databases, especially in light of the many privacy breaches in real-world graph data that was supposed to preserve sensitive information. This paper provides a comprehensive survey of private graph data release algorithms that seek to achieve the fine balance between privacy and utility, with a specific focus on provably private mechanisms. Many of these mechanisms fall under natural extensions of the Differential Privacy framework to graph data, but we also investigate more general privacy formulations like Pufferfish Privacy that can deal with the limitations of Differential Privacy. A wide-ranging survey of the applications of private graph data release mechanisms to social networks, finance, supply chain, health and energy is also provided. This survey paper and the taxonomy it provides should benefit practitioners and researchers alike in the increasingly important area of private graph data release and analysis

    Private Graphon Estimation for Sparse Graphs

    Get PDF
    We design algorithms for fitting a high-dimensional statistical model to a large, sparse network without revealing sensitive information of individual members. Given a sparse input graph GG, our algorithms output a node-differentially-private nonparametric block model approximation. By node-differentially-private, we mean that our output hides the insertion or removal of a vertex and all its adjacent edges. If GG is an instance of the network obtained from a generative nonparametric model defined in terms of a graphon WW, our model guarantees consistency, in the sense that as the number of vertices tends to infinity, the output of our algorithm converges to WW in an appropriate version of the L2L_2 norm. In particular, this means we can estimate the sizes of all multi-way cuts in GG. Our results hold as long as WW is bounded, the average degree of GG grows at least like the log of the number of vertices, and the number of blocks goes to infinity at an appropriate rate. We give explicit error bounds in terms of the parameters of the model; in several settings, our bounds improve on or match known nonprivate results.Comment: 36 page

    Revealing Network Structure, Confidentially: Improved Rates for Node-Private Graphon Estimation

    Full text link
    Motivated by growing concerns over ensuring privacy on social networks, we develop new algorithms and impossibility results for fitting complex statistical models to network data subject to rigorous privacy guarantees. We consider the so-called node-differentially private algorithms, which compute information about a graph or network while provably revealing almost no information about the presence or absence of a particular node in the graph. We provide new algorithms for node-differentially private estimation for a popular and expressive family of network models: stochastic block models and their generalization, graphons. Our algorithms improve on prior work, reducing their error quadratically and matching, in many regimes, the optimal nonprivate algorithm. We also show that for the simplest random graph models (G(n,p)G(n,p) and G(n,m)G(n,m)), node-private algorithms can be qualitatively more accurate than for more complex models---converging at a rate of 1ϵ2n3\frac{1}{\epsilon^2 n^{3}} instead of 1ϵ2n2\frac{1}{\epsilon^2 n^2}. This result uses a new extension lemma for differentially private algorithms that we hope will be broadly useful
    • …
    corecore