6 research outputs found

    A Novel Privacy-Preserved Recommender System Framework based on Federated Learning

    Full text link
    Recommender System (RS) is currently an effective way to solve information overload. To meet users' next click behavior, RS needs to collect users' personal information and behavior to achieve a comprehensive and profound user preference perception. However, these centrally collected data are privacy-sensitive, and any leakage may cause severe problems to both users and service providers. This paper proposed a novel privacy-preserved recommender system framework (PPRSF), through the application of federated learning paradigm, to enable the recommendation algorithm to be trained and carry out inference without centrally collecting users' private data. The PPRSF not only able to reduces the privacy leakage risk, satisfies legal and regulatory requirements but also allows various recommendation algorithms to be applied

    Federated Block Coordinate Descent Scheme for Learning Global and Personalized Models

    Full text link
    In federated learning, models are learned from users' data that are held private in their edge devices, by aggregating them in the service provider's "cloud" to obtain a global model. Such global model is of great commercial value in, e.g., improving the customers' experience. In this paper we focus on two possible areas of improvement of the state of the art. First, we take the difference between user habits into account and propose a quadratic penalty-based formulation, for efficient learning of the global model that allows to personalize local models. Second, we address the latency issue associated with the heterogeneous training time on edge devices, by exploiting a hierarchical structure modeling communication not only between the cloud and edge devices, but also within the cloud. Specifically, we devise a tailored block coordinate descent-based computation scheme, accompanied with communication protocols for both the synchronous and asynchronous cloud settings. We characterize the theoretical convergence rate of the algorithm, and provide a variant that performs empirically better. We also prove that the asynchronous protocol, inspired by multi-agent consensus technique, has the potential for large gains in latency compared to a synchronous setting when the edge-device updates are intermittent. Finally, experimental results are provided that corroborate not only the theory, but also show that the system leads to faster convergence for personalized models on the edge devices, compared to the state of the art.Comment: 31 pages, 5 figures. Codes available at this url {https://github.com/REIYANG/FedBCD}. To appear in AAAI 202
    corecore