3 research outputs found

    New Two Simple Sinusoidal Generators with Four 45o Phase Shifted Voltage Outputs Using Single FDCCII and Grounded Components

    Get PDF
    Two new 45o phase shifted sinusoidal oscillator configurations employing single Second Generation Fully Differential Current Conveyor (FDCCII), two grounded capacitors and two grounded resistors are presented. The proposed oscillators can provide four sinusoidal voltage outputs with each a 45o phase difference. These circuits can also be utilized as voltage-mode quadrature oscillators. Additional output stages incorporation in FDCCII can also result in current outputs spaced 45 degree apart. The proposed circuits enjoy the simplicity and less passive and active component. The Total Harmonic Distortion (THD) of the output waveforms was reasonability values (less than 4.5%). The circuits can supply two equi-quadrature outputs and the Lissajous patterns confirm the quadrature voltage output waveforms. The workability of the circuits is simulated by PSPICE 0.18 μm CMOS technology. The non-ideal analysis and simulation results verifying theoretical analyses are also investigated

    Investigation of Current Sensing Using Inherent Resistance

    Get PDF
    A novel method of current sensing using resistance of power delivery path is introduced as a mean to measure static or dynamic load current in high-power system-on-chips, where conventional methods deemed inadequate. It is named “IRS” here, and it stands for Inherent Resistance Current Sensing. To explain its application and to provide motivation beyond this work, pros and cons of conventional techniques are reviewed with a look at previous works done in this area. It is followed with review of discreet implementation of the sensor (IRS) in chapter three. The measurements results collected using the discrete circuits are included with an in-depth analysis of the results and compensation techniques. It offers insight to effectiveness of the solution and its potential, while highlighting shortcomings and limitation of discrete implementation. This would set the tone to design integrated version of the sensor. In order to select amplifier architecture, a rundown of common methods to construct the instrumentation amplifier is discussed in chapter 4, primarily based on the latest work already done in this field per cited references. This is to help readers to get an overall view of the challenges and techniques to overcome them. Finally, the architecture for the integrated version of the sensor (IRS) is presented, with a proof of concept design. The design is targeted for low voltage VLSI systems to allow integration within large SoCs such as GPUs and CPUs. The primary block, the instrumentation amplifier, is constructed using rail-to-rail current conveyers and simulated using TSMC 32nm process node. The simulation results are analyzed and observations are provided

    Application of current conveyors in electronics circuits

    Get PDF
    Import 13/01/2017Hlavním záměrem a myšlenkou disertační práce je představit proudové konvejory jako moderní aktivní prvky dostupné pro realizaci širokého spektra elektronických obvodů. I přes svoji dlouhou historii nejsou doposud více využívány v praktických aplikacích. Proto hlavní snahou této disertační práce je teoreticky i prakticky dokázat, že proudové konvejory lze považovat za prvky univerzální. V úvodní teoretické části je nastíněna historie vývoje proudových konvejorů a jejich základní princip funkce. Dále jsou popsány prvky CDBA, které demonstrují princip duality a přes tuto teorii se plynule dostaneme plynule na napěťové konvejory, které je v souvislosti s proudovými také třeba zmínit. Teoretická část nabízí jak popis zobecněných variant konvejorů vhodných pro návrh teoretických aplikací s těmito prvky, dále také popis univerzálních konvejorů, vhodných pro praktické aplikace, tak popis možných praktických realizací proudových konvejorů, které se však omezují pouze na prvky CCII+ a CCII-. Praktickou část reprezentují kapitoly popisující návrh syntetických prvků vyšších řádů a jejich implementace ve strukturách kmitočtových filtrů. Tato metoda využívá admitanční sítě, kde je jako aktivní prvek využit opět proudový konvejor. Zde je však možné ověřit funkčnost aplikací pouze pomocí simulací, neboť tyto obvody využívají komerčně nedostupné varianty proudových konvejorů. Další metodou je návrh funkčních blokových struktur s proudovými konvejory, kde se již uplatňují především dostupné CCII+ a proto je možné navržená zapojení s těmito strukturami přímo realizovat. Jako demonstrační zapojení byly vybrány obvody kmitočtových filtrů, zesilovač, oscilátor a funkční generátor. Navržená zapojení pracují na vyšších frekvencích a uplatňují se tak zde výhody využitých proudových konvejorů.Main intention and idea of doctoral thesis is to introduce current conveyors as the modern active elements available for realization of wide spectrum of electronic circuits. Despite quite long history of current conveyors, they are not used more in real applications. Therefore main intention of this doctoral thesis is theoretically and practically to prove that current conveyors can be considered as the universal elements. In the initial part of thesis is described brief history of current conveyors development and theirs basic functionality principle. Furthermore there are described also CDBA elements which demonstrate duality principle and through this theory it is possible continuously to introduce also voltage conveyors, which it is also necessary to mention related to current conveyors. Theoretical part also offers description of general variants of conveyors which are suitable for proposals of theoretical applications, further description of universal conveyors suitable for practical applications. Theoretical part also covers examples of possible practical implementation of current conveyors but it is limited only to variants CCII+ and CCII-. Practical part of thesis is represented by chapters describing proposals of synthetic elements of higher orders and theirs implementation in frequency filters structures. This method uses admittance network when current conveyor is used again as a key active element. In this case it is possible to prove functionality of applications only by simulations because these circuits use commercially unavailable variants of current conveyors. Another design method is design of functional block structures with current conveyors where primarily CCII+ elements are applicable and therefore proposed circuits can be practically realized. Frequency filter, amplifiers, oscillator and functional generator were selected as example applications. Proposed circuits work at higher frequencies and benefits of these modern active elements are enforced.430 - Katedra elektronikyvyhově
    corecore