3 research outputs found

    Design Techniques for On-Chip Global Signaling Over Lossy Transmission Lines.

    Full text link
    This thesis describes techniques for global high-speed signaling over long (~10mm) lossy chip-serial transmission lines. With the increase in clock frequencies to multi-GHz rates, it has become impossible to move data across a die in a single clock cycle using conventional parallel bus-based communication. There are also reliability problems due to timing errors, skew, and jitter in fully synchronous systems. Noise, coupling, and inductive effects become significant for both intermediate length and global routing. A new on-chip lossy transmission line technique is developed and new driver and receiver circuitry for on-chip serial links are described. High-speed long-range serial signaling is best done over transmission lines. However, because of the relatively high sheet resistance of metal interconnect layers, on-chip transmission lines tend to be lossy. Matched termination with resistors and the proper selection of the characteristic impedance of the transmission line structure can effectively suppress ISI. Fast digital CMOS technology allows pulsed mode data drivers to operate at multi-GHz rates. A phase-tuned receiver samples and de-serializes the received signal. Since the sampling instant is tuned to match the received signal eye, there is no requirement to match the clock and signal routing or clock and signal delays. A complete self-testing on-chip transceiver communicating over a 5.8mm on-chip transmission line is implemented in 0.13um CMOS and tested. The measured BER at 9Gbps is less than 10^-10. Interleaving is usually necessary in high serial data rate serializer and de-serializer circuits. Multi-stage LC oscillators can be used to generate low phase noise multi-phases clocks required for interleaving. Conventional coupling between oscillators introduces out of phase currents, and this out of phase current causes a lower effective quality factor for each oscillator stage. However, capacitive coupling, a new technique, introduces in phase coupling between stages. Increased coupling with a ring of capacitors decreases phase spacing error dramatically and, in addition, the phase noise of multi-stages is also decreased thanks to in-phase coupling.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58491/1/parkjy_1.pd

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book
    corecore