14,878 research outputs found

    Variational inequalities characterizing weak minimality in set optimization

    Full text link
    We introduce the notion of weak minimizer in set optimization. Necessary and sufficient conditions in terms of scalarized variational inequalities of Stampacchia and Minty type, respectively, are proved. As an application, we obtain necessary and sufficient optimality conditions for weak efficiency of vector optimization in infinite dimensional spaces. A Minty variational principle in this framework is proved as a corollary of our main result.Comment: Includes an appendix summarizing results which are submitted but not published at this poin

    Reduced basis methods for pricing options with the Black-Scholes and Heston model

    Full text link
    In this paper, we present a reduced basis method for pricing European and American options based on the Black-Scholes and Heston model. To tackle each model numerically, we formulate the problem in terms of a time dependent variational equality or inequality. We apply a suitable reduced basis approach for both types of options. The characteristic ingredients used in the method are a combined POD-Greedy and Angle-Greedy procedure for the construction of the primal and dual reduced spaces. Analytically, we prove the reproduction property of the reduced scheme and derive a posteriori error estimators. Numerical examples are provided, illustrating the approximation quality and convergence of our approach for the different option pricing models. Also, we investigate the reliability and effectivity of the error estimators.Comment: 25 pages, 27 figure

    Deflation for semismooth equations

    Full text link
    Variational inequalities can in general support distinct solutions. In this paper we study an algorithm for computing distinct solutions of a variational inequality, without varying the initial guess supplied to the solver. The central idea is the combination of a semismooth Newton method with a deflation operator that eliminates known solutions from consideration. Given one root of a semismooth residual, deflation constructs a new problem for which a semismooth Newton method will not converge to the known root, even from the same initial guess. This enables the discovery of other roots. We prove the effectiveness of the deflation technique under the same assumptions that guarantee locally superlinear convergence of a semismooth Newton method. We demonstrate its utility on various finite- and infinite-dimensional examples drawn from constrained optimization, game theory, economics and solid mechanics.Comment: 24 pages, 3 figure

    On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes

    Full text link
    Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.Comment: 39 pages, LaTeX2e, amsar

    A Duality Approach to Error Estimation for Variational Inequalities

    Full text link
    Motivated by problems in contact mechanics, we propose a duality approach for computing approximations and associated a posteriori error bounds to solutions of variational inequalities of the first kind. The proposed approach improves upon existing methods introduced in the context of the reduced basis method in two ways. First, it provides sharp a posteriori error bounds which mimic the rate of convergence of the RB approximation. Second, it enables a full offline-online computational decomposition in which the online cost is completely independent of the dimension of the original (high-dimensional) problem. Numerical results comparing the performance of the proposed and existing approaches illustrate the superiority of the duality approach in cases where the dimension of the full problem is high.Comment: 21 pages, 8 figure
    • …
    corecore