1,335 research outputs found

    Algebraic Fault Analysis of SHA-3

    Get PDF
    This paper presents an efficient algebraic fault analysis on all four modes of SHA-3 under relaxed fault models. This is the first work to apply algebraic techniques on fault analysis of SHA-3. Results show that algebraic fault analysis on SHA-3 is very efficient and effective due to the clear algebraic properties of Keccak operations. Comparing with previous work on differential fault analysis of SHA-3, algebraic fault analysis can identify the injected faults with much higher rates, and recover an entire internal state of the penultimate round with much fewer fault injections

    Differential Fault Analysis of SHA-3 under Relaxed Fault Models

    Get PDF
    Keccak-based algorithms such as Secure Hash Algorithm-3 (SHA-3) will be widely used in crypto systems, and evaluating their security against different kinds of attacks is vitally important. This paper presents an efficient differential fault analysis (DFA) method on all four modes of SHA-3 to recover an entire internal state, which leads to message recovery in the regular hashing mode and key retrieval in the message authentication code (MAC) mode. We adopt relaxed fault models in this paper, assuming the attacker can inject random single-byte faults into the penultimate round input of SHA-3. We also propose algorithms to find the lower bound on the number of fault injections needed to recover an entire internal state for the proposed attacks. Results show that on average the attacker needs about 120 random faults to recover an internal state, while he needs 17 faults at best if he has control of the faults injected. The proposed attack method is further extended for systems with input messages longer than the bitrate

    Lightweight protection of cryptographic hardware accelerators against differential fault analysis

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Hardware acceleration circuits for cryptographic algorithms are largely deployed in a wide range of products. The HW implementations of such algorithms often suffer from a number of vulnerabilities that expose systems to several attacks, e.g., differential fault analysis (DFA). The challenge for designers is to protect cryptographic accelerators in a cost-effective and power-efficient way. In this paper, we propose a lightweight technique for protecting hardware accelerators implementing AES and SHA-2 (which are two widely used NIST standards) against DFA. The proposed technique exploits partial redundancy to first detect the occurrence of a fault and then to react to the attack by obfuscating the output values. An experimental campaign demonstrated that the overhead introduced is 8.32% for AES and 3.88% for SHA-2 in terms of area, 0.81% for AES and 12.31% for SHA-2 in terms of power with no working frequency reduction. Moreover, a comparative analysis showed that our proposal outperforms the most recent related countermeasures.Peer ReviewedPostprint (author's final draft

    Differential Fault Analysis of SHA3-224 and SHA3-256

    Get PDF
    The security of SHA-3 against different kinds of attacks are of vital importance for crypto systems with SHA-3 as the security engine. In this paper, we look into the differential fault analysis of SHA-3, and this is the first work to conquer SHA3-224 and SHA3-256 using differential fault analysis. Comparing with one existing related work, we relax the fault models and make them realistic for different implementation architectures. We analyze fault propagation in SHA-3 under such single-byte fault models, and propose to use fault signatures at the observed output for analysis and secret retrieval. Results show that the proposed method can effectively identify the injected single-byte faults, and then recover the whole internal state of the input of last round χ\chi operation (χi22\chi^{22}_i) for both SHA3-224 and SHA3-256

    The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle

    Get PDF
    We describe the state of the art of scientific research on the earthquake cycle based on the analysis of Synthetic Aperture Radar (SAR) data acquired from satellite platforms. We examine the achievements and the main limitations of present SAR systems for the measurement and analysis of crustal deformation, and envision the foreseeable advances that the Sentinel-1 data will generate in the fields of geophysics and tectonics. We also review the technological and scientific issues which have limited so far the operational use of satellite data in seismic hazard assessment and crisis management, and show the improvements expected from Sentinel-1 dat

    CDCL(Crypto) and Machine Learning based SAT Solvers for Cryptanalysis

    Get PDF
    Over the last two decades, we have seen a dramatic improvement in the efficiency of conflict-driven clause-learning Boolean satisfiability (CDCL SAT) solvers over industrial problems from a variety of applications such as verification, testing, security, and AI. The availability of such powerful general-purpose search tools as the SAT solver has led many researchers to propose SAT-based methods for cryptanalysis, including techniques for finding collisions in hash functions and breaking symmetric encryption schemes. A feature of all of the previously proposed SAT-based cryptanalysis work is that they are \textit{blackbox}, in the sense that the cryptanalysis problem is encoded as a SAT instance and then a CDCL SAT solver is invoked to solve said instance. A weakness of this approach is that the encoding thus generated may be too large for any modern solver to solve it efficiently. Perhaps a more important weakness of this approach is that the solver is in no way specialized or tuned to solve the given instance. Finally, very little work has been done to leverage parallelism in the context of SAT-based cryptanalysis. To address these issues, we developed a set of methods that improve on the state-of-the-art SAT-based cryptanalysis along three fronts. First, we describe an approach called \cdcl (inspired by the CDCL(TT) paradigm) to tailor the internal subroutines of the CDCL SAT solver with domain-specific knowledge about cryptographic primitives. Specifically, we extend the propagation and conflict analysis subroutines of CDCL solvers with specialized codes that have knowledge about the cryptographic primitive being analyzed by the solver. We demonstrate the power of this framework in two cryptanalysis tasks of algebraic fault attack and differential cryptanalysis of SHA-1 and SHA-256 cryptographic hash functions. Second, we propose a machine-learning based parallel SAT solver that performs well on cryptographic problems relative to many state-of-the-art parallel SAT solvers. Finally, we use a formulation of SAT into Bayesian moment matching to address heuristic initialization problem in SAT solvers
    • …
    corecore