
Noname manuscript No.
(will be inserted by the editor)

Differential Fault Analysis of SHA-3 under Relaxed
Fault Models

Pei Luo · Yunsi Fei � · Liwei Zhang ·
A. Adam Ding

Received: date / Accepted: date

Abstract Keccak-based algorithms such as Secure Hash Algorithm-3 (SHA-
3) will be widely used in crypto systems, and evaluating their security against
different kinds of attacks is vitally important. This paper presents an efficient
differential fault analysis (DFA) method on all four modes of SHA-3 to recover
an entire internal state, which leads to message recovery in the regular hashing
mode and key retrieval in the message authentication code (MAC) mode. We
adopt relaxed fault models in this paper, assuming the attacker can inject
random single-byte faults into the penultimate round input of SHA-3. We also
propose algorithms to find the lower bound on the number of fault injections
needed to recover an entire internal state for the proposed attacks. Results
show that on average the attacker needs about 120 random faults to recover
an internal state, while he needs 17 faults at best if he has control of the faults
injected. The proposed attack method is further extended for systems with
input messages longer than the bitrate.

Keywords SHA-3 · Keccak · Differential fault analysis · Hardware security

Pei Luo
Department of Electrical and Computer Engineering
Northeastern University, Boston, USA
E-mail: silenceluo@gmail.com

Yunsi Fei �
Department of Electrical and Computer Engineering
Northeastern University, Boston, USA
E-mail: yfei@ece.neu.edu

Liwei Zhang
Department of Mathematics
Northeastern University, Boston, USA
E-mail: zhang.liw@husky.neu.edu

A. Adam Ding
Department of Mathematics
Northeastern University, Boston, USA
E-mail: a.ding@neu.edu

2 Pei Luo et al.

1 Introduction

Keccak, a family of sponge functions, can be used to build various security
modules widely used in crypto systems, including hash function, symmetric
cryptographic function, pseudo-random number generator and authenticated
encryption [1]. The new SHA-3 standard [2] is based on Keccak. Two can-
didates for CAESAR (Competition for Authenticated Encryption: Security,
Applicability, and Robustness), Ketje and Keyak, are also built upon Keccak.
Therefore, the security of Keccak against different kinds of attacks is critical
to security system design. In this paper, we use SHA-3 as an example for the
security analysis of Keccak, and present an efficient differential fault analysis
(DFA) method on all four modes of SHA-3 function.

DFA is a powerful and efficient attack method, which utilizes the depen-
dency of the faulty output on the internal intermediate variables to recover the
secret. DFA has been used to break many cryptographic algorithms. For exam-
ple, it has been used to extract the secret key of symmetric ciphers. It was first
introduced to conquer the Data Encryption Standard (DES) algorithm [3], and
later it was used to break the Advanced Encryption Standard (AES) [4]. Many
other ciphers have also been hacked by DFA, including CLEFIA [5], Mickey
[6, 7] and Grain [8, 9].

Some existing hash standards have been evaluated against DFA attacks,
including SHA-1 [10], Streebog [11], MD5 [12] and GrøStl [13]. For hash func-
tions in general usage, DFA can be used to retrieve the original message. For
example, it is found in [12] that on average 144 random faults are required for
MD5 in order to discover the input message block. For GrøStl algorithm, on
average 280 single-bit faults are needed to invert each compression step. When
hash functions are used in the message authentication code (MAC) mode with
a secret key, DFA also becomes an effective method to recover the key and
then generate forgery messages and corresponding MACs against authentica-
tion. For example, in [10], the input of SHA-1, including the secret key and
message, is fully extracted with about 1000 random faults. For Streebog, an
average number of faults that varies between 338-1640 is required to recover
the secret key for different MAC settings [11]. When GrøStl is used in a keyed
hash function, about 300 faults are needed to retrieve the secret key [13].

Previous works on Keccak mainly focus on side-channel power analysis and
cryptanalytic collisions attacks [14–21]. To the best of our knowledge, only one
work about DFA on SHA-3 has been published before us [22]. In [22], a single-
bit fault model is used , and only two modes of SHA-3 with longer digest length,
namely SHA3-384 and SHA3-512, have been discussed. Injection of single-bit
faults into crypto systems requires higher control precision and sometimes
invasive methods like laser emission, which are costly and also less effective
as the technology scales down. Typical non-invasive fault injection methods,
such as clock glitches and supply voltage variation, are more general and would
affect a group of bits in intermediate states all together, i.e., inducing byte-
level faults. Our previous work [23] extends DFA to the other two modes of

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 3

SHA-3 with shorter digest length, SHA3-224 and SHA3-256, under a relaxed
single-byte fault model. It analyzes fault propagation of SHA-3 under byte-
level fault injection, and proposes two different ways to address the issue of
short observable digests in SHA3-224 and SHA3-256.

This paper is an extension of our previous work [23]. In addition to the
random fault model, we propose an optimization method with heuristics, so
that the DFA can use the least chosen faults to recover the internal state.
We also include more substantial discussion on extending the DFA to SHA-3
systems with input messages longer than the bitrate. The contributions of this
work are as following:

– We introduce the concept of fault propagation into DFA of SHA-3, and
this formal method will ensure the extendability of proposed DFA.

– We extend DFA on SHA-3 from single-bit fault model to more relaxed
fault models, and from two SHA-3 functions with longer digest to all four
of them. For example, we can break all four SHA-3 functions under single-
byte fault model, and break SHA3-384 and SHA3-512 under 16-bit fault
model in this work.

– An optimization method with heuristics is proposed, and this method can
be used to optimize DFA so that the proposed method can use the fewest
chosen faults to recover the internal state.

– Discussion about how variable key and message length will affect DFA is
given.

We simulate all the proposed methods for all four modes of SHA-3. Results
show that, for SHA3-384 and SHA3-512, about 120 random single-byte faults
are needed to recover an entire internal state, while about 500 single-bit ran-
dom faults are needed in previous work [22]. When the fault injection can be
controlled, our simulation results of the heuristics show that only 17 selected
single-byte faults and 129 selected single-bit faults are required to recover the
internal state, under the two different fault models, respectively. Our attack
method can break SHA3-224 and SHA3-256 as well, while the numbers of
required random effective faults are about 250 and 150, respectively.

The rest of this paper is organized as follows. In Section 2, we present
the basic knowledge of SHA-3 that will be used in this paper, and describe
the fault models. In Section 3, we analyze the fault propagation process in
SHA-3 and construct the fault signatures. In Section 4, we present the attack
on SHA3-384 and SHA3-512 using the proposed fault signature method under
the relaxed fault models. In Section 5, we extend the attack to SHA3-224 and
SHA3-256, and show the method to further improve the attack efficiency. In
Section 6, we propose a heuristic algorithm to improve the efficiency of the
DFA with more control of the faults injected, and derive the lower bound on
the number of fault injections needed for the proposed attacks. In Section 7,
we discuss attacks on SHA-3 systems with the input message size larger than
the bitrate, and the protection of SHA-3 systems against DFAs. Finally, we
conclude the paper in Section 8.

4 Pei Luo et al.

2 Preliminaries of SHA-3 and Differential Fault Analysis

2.1 Preliminaries of Keccak Hash Function

The Keccak hash algorithm can work in different modes with variable length.
Standardized by NIST, SHA-3 functions operate in modes of Keccak-f [1600,
d] [2], where each internal state is 1600-bit organized in a 3-D array, as shown
in Fig. 1, and d is the output length at choice. Each state bit is addressed by
three coordinates, denoted as S(x, y, z), x, y ∈ {0, 1, ..., 4}, z ∈ {0, 1, ..., 63}.
2-D entities, plane, sheet and slice, and 1-D entities, lane, column and row, are
also defined in Keccak and shown in Fig. 1.

0 1 2 3 4 5 6

 …

 63

4

3

2

1

0

y

z

0 1 2 3 4 x

Fig. 1: State data structures used in Keccak [1]

We also define vectors X = [0 : 4], Y = [0 : 4] and Z = [0 : 63] to stand
for multiple bits in one row, column, and lane, respectively. For example, we
can denote the bottom plane of state S (320 bits) as S(X, 0, Z). Note that
coordinates x and y are modular of 5 while z is modular of 64.

Keccak relies on a Sponge architecture to iteratively absorb message inputs
and squeeze out digest by an f permutation function. The Sponge architecture
is shown in Fig. 2, where r is called the bitrate and c is the capacity (r +
c=1600). Here f0 to f5 are all the same f permutation function.

0

0

0f 1f 2f 3f 4f 5f
r

c

0P
1P 2P 3P 0z

1z 2z

absorbing squeezing

Fig. 2: The sponge construction

The number of f functions in the absorbing phase is determined by the
message size, and the digest size (d in Keccak-f [1600, d]) will decide the num-
ber of f function in the squeezing phase together with bitrate r. SHA-3 family

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 5

consists of four digest size (d = 224, 256, 384, 512), namely SHA3-224, SHA3-
256, SHA3-384, and SHA3-512 [2]. We will discuss all four SHA-3 functions
under relaxed fault models in this paper. Note here that for SHA3-d function,
c = 2d and r + c = 1600.

In this paper, we first simplify the setting by assuming that the length of
the input message is smaller than the bitrate r, and as r > d holds for all
four modes of SHA-3 function, there will be only one f function involved for
absorbing and squeezing. In Section 7, we will extend the attacks for input
messages with variable length, in which multiple f functions will be involved.

The f function consists of 24 rounds for 1600-bit operations, where each
round has five sequential steps:

Si+1 = ι ◦ χ ◦ π ◦ ρ ◦ θ(Si), i ∈ {0, 1, · · · , 23} (1)

in which S0 is the initial input. Details of each step are described below:

− θ is a linear operation which involves 11 input bits and outputs a single
bit. Each output state bit is the XOR between the input state bit and two
neighbor columns. We denote the input of θ as θi while the output as θo, and
the operation is given as follows:

θo(x, y, z) = θi(x, y, z)⊕ (⊕4
y=0θi(x− 1, y, z))⊕ (⊕4

y=0θi(x+ 1, y, z − 1)).

− ρ is a rotation over the state bits along z-axis.

− π is a permutation over the state bits within slices.

− χ is a non-linear step that contains mixed binary operations over state
bits in rows. Each bit of the output state is the result of an XOR between the
corresponding input state bit and its two successive bits along the x-axis:

χo(x, y, z) = χi(x, y, z)⊕ (χi(x+ 1, y, z) · χi(x+ 2, y, z)).

The χ operation is reversible, each χi bit can be expressed in below formula
which involves all five bits of χo in a row [1,24]:

χi(x, y, z) = χo(x, y, z)⊕χo(x+ 1, y, z) ·
(
χo(x− 1, y, z)⊕ χo(x+ 2, y, z)

⊕ χo(x− 1, y, z) · χo(x+ 3, y, z)
)
. (2)

− ι is a binary XOR with a round constant.

Besides the general hash mode, SHA-3 will be widely used for authenti-
cation, and MAC-Keccak is the recommended MAC function. It is designed
to securely create a MAC by hashing the concatenation of the key and the
message [25]:

MAC(M,K) = H(K||M). (3)

6 Pei Luo et al.

When SHA-3 is used in general hash mode, the goal is to recover the input
message; and when SHA-3 is used in MAC mode, the goal is to recover the
authentication key.

2.2 Notations and Data Structure

We annotate the last two rounds of SHA-3 operations and important inter-
mediate states in Fig. 3, and use these notations in the rest of this paper.
We pick the penultimate round input (θ22i) as the fault injection point, and
the target is to recover the whole internal state of χ22

i (1600 bits) with access
to the digest H at much shorter length, which is d-bit for SHA3-d function.
The key insight of DFA is that the fault injection reveals some internal state
bits through the differential digest output (the difference between the correct
digest and faulty digest).

22

i

 22

22

o
22

i
22

o

H

23

i

 23

23

o
23

i
23

o
21

o

Fig. 3: Notations for operations and intermediate states

For one f function, if the whole internal state χ22
i is recovered, the in-

put of SHA-3, S0, can be recovered because all five operations in Keccak are
reversible. We will extend the attacks to SHA-3 systems with multiple f func-
tions in Section 7.1.

For commonly used SHA-3 implementations, data structures are organized
along each lane [26,27]. There are two commonly used implementation methods
for Keccak, non-interleaved and interleaved implementation [28]. One byte is
eight consecutive bits in one lane for non-interleaved implementations. Bit
interleaving is a technique to put the bits in even positions and odd positions
of one lane into separate words (bytes) for more efficient implementation.

For interleaved and non-interleaved implementations, different bit organi-
zation structure in a byte or word will result in different fault propagation
characteristics. As bit interleaving technique has been widely used in SHA-3
implementations in embedded cryptographic systems [26,27], we will evaluate
both of these two implementations in our work. We refer to the source code
provided online [26] for all implementations and simulations in this paper.

2.3 The Fault Model Used in This Paper

Our DFA is based on byte-level faults. General fault injection methods, in-
cluding clock glitches and supply voltage variations, will affect multiple bits in
a data structure simultaneously. For example, one byte will be affected on 8-
bit architectures, and one 16-bit word will be affected on 16-bit architectures.

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 7

Multiple concurrent bit faults will interfere with each other during operations
in the hash algorithm, and considering only individual independent single-bit
faults does not address these interactions. To illustrate our proposed method,
we use the fault model of single-byte as example:

– The attacker can inject faults into one byte of the penultimate round input
θ22i ;

– The attacker has no control on either the position (which byte) or the value
of the injected faults;

– The attacker can only observe the correct and faulty SHA-3 digest outputs,
H and H

′
, which are d-bit instead of 1600 bits;

– The attacker can inject multiple random faults into the same input message
for different execution runs.

Besides single-byte fault model, we will also check our method under single-
word (16-bit) fault model. As the single-bit fault model used in [22] is just a
special case of the single-byte fault model, we will also also check attack results
under that model.

3 Fault Propagation and Fault Signature

Generally, because of confusion and diffusion properties in crypto operations,
any bit flip at the input message will affect all the bits at the output under
perfect randomness and the fault analysis would not work. For SHA-3, the
path from the fault injection point (θ22i) to the observable output (H) is not
very long - only two rounds of operations, and therefore different faults injected
will cause different patterns at the differential output ∆H = H ⊕H ′ . We call
such differential patterns as Fault Signature (FS) in this paper. Different fault
signatures can be used to identify the injected fault, and then recover the
internal state bits.

Different from previous crypto systems like AES and DES, which are orga-
nized and operated in several modules (like 8-bit bytes), Keccak is organized
at bit level and operations are performed on bits. For block ciphers like AES,
the attacker can observe the differential output of 16 bytes to identify the
injected fault positions and values. It has been shown in [22] that differential
output of SHA-3 has much more complicated characteristics, and therefore
DFA methods for previous block ciphers cannot be applied to Keccak based
functions. In this section, we show the fault propagation process in SHA-3 and
extract the fault signature for each possible injected fault.

3.1 Observable Hash Digest

For DFA, the first step is to select a comparison point (intermediate state of
the algorithm), where information obtained from the differential outputs is

8 Pei Luo et al.

used to match the various patterns of the fault propagation so as to identify
the injected fault or recover secret message or key. In [22], the comparison
point is picked at θ23o for SHA3-384 and SHA3-512 to identify the single-bit
fault injected. For SHA3-384 and SHA3-512, a whole plane of 320 bits (y = 0,
the bottom plane) at the output H is observable. Because all the operations
ρ, π, χ, and ι are reversible, the attacker can make use of this plane to recover
the bottom plane (320 bits) of χ23

i :

χ23
i (X, 0, Z) = χ−1 ◦ (ι23)−1

(
H(y = 0)),

and the differential, ∆χ23
i (X, 0, Z), can be derived. When selecting the com-

parison point at χ23
i , we need to construct fault signatures at χ23

i , FSχ23
i

, for
attacks in this paper.

For SHA3-224 and SHA3-256, only a partial bottom plane of the output of
the f function is observed, and therefore χ23 cannot be inverted directly, ac-
cording to (2). For SHA3-224 and SHA3-256, we present corresponding attack
methods in Section 5.

3.2 Fault Signature Generation

For single-byte fault model, any internal state of Keccak-f [1600, d] is composed
of 200 bytes (0 ≤ P < 200), and the fault value (F , defined as the differential
of the state byte of the penultimate round input) ranges from 1 to 255, where
for each bit of F , 0 means the corresponding state bit does not change, and
1 means the state bit flips. For example, F = 1 means the lowest bit of the
state byte flips. For any possible fault (F) at any one of the 200 positions (P),
we denote the corresponding fault signature at χ23

i as FSχ23
i

[P][F]. Without
further specification, all fault signatures are 1,600 bits, standing for the 1,600
differential bits of the state caused by the fault F injected at byte P of θ22i .

For faults injected at θ22i , it will propagate to χ23
i through the operations

shown in Fig. 3. We separate these operations into two categories:

– Operations that will not change bit values of fault signatures, including
bit rotation operations ρ and π that only change the bit positions, and
constant number addition operation ι.

– Operations that will change the bit values of fault signatures, which involve
multiple bits to generate a single output bit, namely θ and χ. There is also
difference between these two operations, θ is linear (only consisting of XOR
operations) while χ is non-linear (consisting of operations AND and NOT).

In the first kind of operations, for ρ and π, faults at the input will go
through the operation (position permutation) directly and propagate to the
output, i.e., ∆ρo = ρ(∆ρi) and ∆πo = π(∆πi). For operation ι, the fault does
not change at all, i.e., ∆ιo = ∆ιi.

For the second kind of operations, one output bit is generated from multiple
input bits. For θ22 operation, one single-bit fault ∆θ22i (x, y, z) will propagate to

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 9

11 bits of θ22o , with their differential denoted as ∆θ22o (x, y, z), ∆θ22o (x+1, Y, z)
and ∆θ22o (x − 1, Y, z + 1), which are on the state bit and its two neighbor
columns in different sheets. For the single-byte fault model, all the faulty bits
are in the same lane of θ22i . With θ operation, no θ22o bit will involve more
than one faulty bit. Thus, for θ22, we have ∆θ22o = θ(∆θ22i).

In this paper, we use a single-bit fault at θ22i (0, 0, 0) (∆θ22i (0, 0, 0) = 1 while
all other bits of∆θ22i are 0) as an example to demonstrate the fault propagation
in SHA-3, and use it to explain the construction of fault signatures. According
to the above analysis of fault propagation through different operations, the
single-bit fault will be diffused to 11 bits after θ22 operations, and then rotated
into different lanes and rows through ρ and π. The fault signature FSχ22

i
at

the input of χ22 for this single-bit fault is shown in Fig. 4.

x=0:

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00001000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

x=1:

00000000 00000000 00000000 00000000 00000000 00001000 00000000 00000000

00000000 00000000 00000100 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

x=2:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00100000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 10000000 00000000 00000000

x=3:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000100 00000000 00000000

00000000 01000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

x=4:

00000000 00000001 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00100000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

y=0

.

.

.

4

… … … … … … … ... 63

y=0

.

.

.

4

y=0

.

.

.

4

y=0

.

.

.

4

y=0

.

.

.

4

z=0

Fig. 4: Fault signature at χ22
i for the example single-bit fault injected at θ22i

Due to the linear properties of θ, ρ and π operations, each bit of FSχ22
i

will be either 0 or 1, depending on the value and position of the injected faults
only. As the fault keeps propagation, two important processes, χ22 and θ23,
will determine the fault signature FSχ23

i
. If we denote the fault propagation

of χ22 as FPχ, and the fault propagation of θ23 as FPθ, the corresponding
fault signature at χ23

i can be denoted as follows (note that operation ι does
not change the propagation of the faults):

FSχ23
i

= π ◦ ρ ◦ FPθ ◦ FPχ(∆χ22
i). (4)

10 Pei Luo et al.

We next analyze fault propagation of χ22 and θ23 in following section re-
spectively.

3.2.1 Fault Propagation in χ22 - FPχ

χ is the only nonlinear operation in Keccak, and its AND operation leaks
information of its input state bits with fault(s) on χi. Under the single-bit
fault model in [22], no more than one bit will be polluted in each row of χ22

i ,
as also shown in Fig. 4 for vectors ∆χ22

i (X, y, z). For the relaxed models used
in this paper, multiple bits may be polluted in one row of χ22

i . In this section,
we present the general fault propagation of multi-bit faults in χ operation.

Denote five bits in one row of χ input as {ai, bi, ci, di, ei}, then five bits
of corresponding χo output row can be denoted as ao = ai ⊕ (b̄i · ci), bo =
bi ⊕ (c̄i · di), co = ci ⊕ (d̄i · ei), do = di ⊕ (ēi · ai) and eo = ei ⊕ (āi · bi).

We take ao as an example to demonstrate the fault propagation in χ op-
eration. Bit ao is affected by bits ai, bi and ci:

1. With a single-bit fault on ai (∆ai = 1), ∆ao = ∆ai = 1.
2. With a single-bit fault on bi (∆bi = 1), a′o = ai ⊕ (b̄′i · ci), and then
∆ao = ∆bi · ci = ci, which leaks the internal state ci information.

3. With a single-bit fault on ci (∆ci = 1), a′o = ai ⊕ (b̄i · c′i), and then
∆ao = (1⊕ bi) ·∆ci = bi.

4. With a two-bit fault on ai and bi (∆ai = ∆bi = 1), a′o = a′i ⊕ (b̄′i · ci), and
then ∆ao = ci.

5. With a two-bit fault on bi and ci (∆bi = ∆ci = 1), a′o = ai ⊕ (b̄′i · c′i), and
then ∆ao = ∆bi · ci ⊕ (1⊕ bi) ·∆ci ⊕∆bi ·∆ci = bi ⊕ ci.

6. With a two-bit fault on ai and ci (∆ai = ∆ci = 1), a′o = a′i ⊕ (b̄i · c′i), and
then ∆ao = ∆ai ⊕ (1⊕ bi) ·∆ci = bi.

7. With a three-bit fault (∆ci = ∆bi = ∆ci = 1), a′o = a′i ⊕ (b̄′i · c′i), and thus
∆ao = ∆ai ⊕∆bi · ci ⊕ (1⊕ bi) ·∆ci ⊕∆bi ·∆ci = bi ⊕ ci.

In summary, we can denote the fault signature for bit χ22
o (x, y, z) as in

TABLE 1.
According to the above analysis, we can see that the nonlinear χ operation

may cause leakage of some χ22
i bits in the differential χ22 output. We present

the whole fault pattern at χ22
o as in Fig. 5, in which ∆χ22

o (x, y, z) is denoted as
C(x, y, z) for simplicity, and the same single-bit fault ∆θ22i (0, 0, 0) = 1 example
is assumed.

In Fig. 5, each differential bit ∆χ22
o (x, y, z) takes a value of ‘0’, ‘1’ or

‘x’, in which 1 (0) means this corresponding output bit flips (does not flip)
with the specific fault injected, respectively, regardless of the internal states.
However, ‘x’ at a bit position means that the corresponding ∆χ22

o bit value
depends on some χ22

i bit(s), and it can be ‘0’ or ‘1’. For example, we denote
∆χ22

o (0, 0, 44) as ‘x’, because ∆χ22
o (0, 0, 44) = χ22

i (2, 0, 44) under the fault
injected (∆θ22i (0, 0, 0) = 1), and χ22

o (0, 0, 44) would flip if χ22
i (2, 0, 44) = 1,

otherwise it remains unchanged if χ22
i (2, 0, 44) = 0. Thus, if the attacker has

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 11

Table 1: Fault propagation of operation χ22

Fault at χ input Fault signature at χ output

∆χ22
i ([x : x+2], y, z) FSχ22

o
(x, y, z)

[1,0,0] 1

[0,1,0] χ22
i (x+ 2, y, z)

[0,0,1] χ22
i (x+ 1, y, z)

[1,1,0] χ22
i (x+ 2, y, z)

[0,1,1] χ22
i (x+ 1, y, z)⊕χ22

i (x+ 2, y, z)

[1,0,1] χ22
i (x+ 1, y, z)

[1,1,1] χ22
i (x+ 1, y, z)⊕ χ22

i (x+ 2, y, z)

10000000 00000000 00000000 00000000 00000000 0000x000 00000000 00000000

00000000 00000000 00000x00 00000000 00000000 00000000 00000000 00000000

01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00x00000 00000000 00001000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 x0000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00001000 00000000 00000000

00000000 00000000 00000100 00000000 00000000 00000x00 00000000 00000000

00000000 0x000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00x00000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 x0000000 00000000 00000000

00000000 0000000x 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000x00 00000000 00000000

00000000 0x000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00100000 00000000 00000000 00000000 00000000 00000000 00000000

00x00000 00000000 00000000 00000000 00000000 10000000 00000000 00000000

x0000000 0000000x 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000100 00000000 00000000

0x000000 01000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 0000x000 00000000 00000000 00000000 00000000

00x00000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

x0000000 00000001 00000000 00000000 00000000 0000x000 00000000 00000000

00000000 00000000 00000x00 00000000 00000000 00000000 00000000 00000000

0x000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 0000x000 00000000 00000000 00000000 00000000

00100000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

)40,4,1(1)40,4,0();10,3,1(1)10,3,0();21,1,2()21,1,0();44,0,2()44,0,0(22222222

iiii CCCC

)3,4,2(1)2,4,2();9,2,4()9,2,2();4,1,45()2,1,45();15,0,3(1)15,0,2(22222222

iiii CCCC

)40,4,3()40,4,1();10,3,3()10,3,1();9,2,2(1)9,2,1();45,1,2(1)45,1,1(22222222

iiii CCCC

)0,4,2()3,4,2();4,3,28(1)3,3,28(

);4,2,1(1)3,2,1();0,0,15()3,0,15();0,0,4(1)0,0,3(

2222

222222

ii

iii

CC

CCC

)28,3,1()28,3,4();1,2,1()1,2,4(

);1,21,0(1)4,1,21();0,44,0(1)4,0,44();0,0,1()0,0,4(

2222

222222

ii

iii

CC

CCC

Fig. 5: Fault signature at the output of χ22

knowledge of ∆χ22
o (0, 0, 44) and the injected fault, he can construct the corre-

sponding fault signature and then recover the bit χ22
i (2, 0, 44).

12 Pei Luo et al.

3.2.2 Fault Propagation in θ23 – FPθ

Each bit of θo is the XOR result of 11 input bits: its corresponding input bit
with two nearby input columns. We can denote ∆θ23o (x, y, z) as follows:

∆θ23o (x, y, z) = ∆θ23i (x, y, z)⊕ (⊕4
y=0∆θ

23
i (x− 1, y, z))

⊕ (⊕4
y=0∆θ

23
i (x+ 1, y, z − 1)). (5)

Thus the fault propagation function FPθ can be denoted as follows:

FSθ23o = θ(FSχ22
o

). (6)

Each bit of FSχ22
o

can be denoted as 0, 1, or a function of certain χ22
i bits.

For each bit of FSθ23o , some of the corresponding 11 FSχ22
o

bits may depend
on the same χ22

i bits, and therefore some dependencies will be eliminated with
the operation of XOR. This is a key insight for our byte-level (multiple bit)
fault propagation analysis. For example, in the interleaved implementation,
when fault F = 65 is injected at P = 16, ∆θ23i (4, 4, 3) = χ22

i (0, 4, 3) and
∆θ23i (3, 4, 3) = χ22

i (0, 4, 3). ∆θ23o (4, 4, 3), which involves the two input bits
θ23i (4, 4, 3) and θ23i (3, 4, 3), will not depend on χ22

i (0, 4, 3) anymore because the
dependencies get canceled out by XOR between the two input bits. Eventually,
the fault signature at the θ23 output, FSθ23o , has a similar format as FSχ22

o
,

with each bit being 0, 1, or an odd or even function (XOR) over some χ22
i bits

and constant one.

As ∆χ23
i = π ◦ ρ(∆θ23o), it is easy to build the fault signature at χ23

i

with FSθ23o constructed from the above analysis, thus we show FSχ23
i

directly

here. We use the same example to show how the single-bit fault at θ22i (0, 0, 0)
propagates to χ23

i . For SHA3-224 and SHA3-256, only partial bottom plane
(less than 320 bits) of the output state H will be observable. Nevertheless
Fig. 6 presents the fault signature in the whole bottom plane of FSχ23

i
, in

which we denote ∆χ23
i (x, 0, z) as E(x, z) for simplicity.

With the observed bits of ∆χ23
i and the fault signatures, the attacker can

work on equations which involve only one bit of χ22
i to recover the χ22

i bits,
and then plug them back into equations which involve more than one χ22

i

bit to recover the remaining χ22
i bits. For example, as shown in Fig. 6, with

the single-bit fault injected at θ22i (0, 0, 0), the attacker can use FSχ23
i

(1, 0, 24)

to recover χ22
i (2, 0, 44) first. Then replace χ22

i (2, 0, 44) in FSχ23
i

(0, 0, 44) to

recover χ22
i (0, 0, 44).

In this section, we showed the fault propagation process in SHA-3, and
analyzed the composition of fault signatures at χ23

i . In next two sections, we
will show how to use the constructed fault signatures to conquer all four modes
of SHA-3.

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 13

xx100000 00xx0001 00000x10 0000x000 00000000 0x00x1x0 00000000 00000000

0x000000 10000000 0000x100 xxx00000 00000000 0000110x 000000x1 0000x000

10000000 x0000000 000x0001 x1000000 00000000 0000xxx0 0000xx00 000x0000

00x00000 00000000 000000xx 100000x1 0000x100 000x0000 0xx00000 00000100

00000000 000000xx x0000001 0x000x00 0000x000 00x10000 0000000x 000x0000

);15,0,3(1)60,1();10,3,1()9,2,4(1)54,1();2,4,3(1)47,1();45,1,4()26,1(

);45,1,2(1)25,1();44,0,2()24,1();40,4,1(1)20,1();21,1,2(1)1,1(

2222222222

22222222

iiiii

iiii

EEEE

EEEE

);44,0,2()44,0,0(1)44,0();40,4,3()41,0();28,3,1()28,0();21,1,0(1)21,0(

);45,1,2(1)46,0();10,3,3()11,0();9,2,2(1)10,0();1,2,1()1,0();0,0,1(1)0,0(

2222222222

2222222222

iiiii

iiiii

EEEE

EEEEE

);15,0,0()59,2();10,3,3(1)53,2();9,2,4()9,2,2(1)52,2();2,4,0()46,2(

);1,2,4(1)45,2();0,0,4(1)44,2();45,1,2(1)24,2();40,4,3()19,2();28,3,4(1)8,2(

2222222222

2222222222

iiiii

iiiii

EEEE

EEEEE

);28,3,1()50,3();28,3,4(1)49,3();21,1,0(1)43,3();15,0,3(1)36,3(

);9,2,4()30,3();2,4,3()1,2,1(1)23,3();0,0,1()22,3();45,1,4()44,0,0(1)2,3(

22222222

222222222222

iiii

iiiiii

EEEE

EEEE

);44,0,2(1)59,4();40,4,1(1)55,4();28,3,4(1)42,4();21,1,2()36,4(

);15,0,0()29,4();10,3,1(1)25,4();2,4,0()16,4();1,2,4()15,4();0,0,4(1)14,4(

22222222

2222222222

iiii

iiiii

EEEE

EEEEE

Fig. 6: Fault signature at χ23
i (Bottom plane)

4 Differential Fault Analysis of SHA3-384 and SHA3-512

In this section, we use the constructed fault signatures in the previous sec-
tion to conquer SHA3-384 and SHA3-512. In Section 4.1, we will present the
method to identify the injected fault, including the position P and value F ,
using the constructed fault signatures. Then we show how to recover some χ22

i

bits using the identified fault in Section 4.2.

4.1 Fault Position P and Value F Recovery

We separate the 320 observable ∆χ23
i bits (five lanes) into two groups:

– ∆χ23
i .white contains the bits (x, y, z) of∆χ23

i with∆χ23
i (x, y, z) = 0, which

means that these bits are not flipped under the injected fault;
– ∆χ23

i .black contains the bits (x, y, z) of ∆χ23
i with ∆χ23

i (x, y, z) = 1, which
means these bits are flipped under the injected fault.

We would like to use the observed ∆χ23
i to infer the fault injection position

(at byte P0) and the fault value (F0). For any fault F at position P , the fault
signature at the bottom plane of χ23

i consists of five lanes, and we can separate
the 320 bits of FSχ23

i
[P][F](x, y, z) (y = 0) into three groups:

– FSχ23
i

[P][F].white contains the bits (x, y, z) with FSχ23
i

[P][F](x, y, z) = 0,
i.e., the injected fault does not affect these state bits.

– FSχ23
i

[P][F].black contains the bits (x, y, z) with FSχ23
i

[P][F](x, y, z) = 1,
which are for sure to flip when the fault is injected.

– FSχ23
i

[P][F].grey contains the bits (x, y, z) with FSχ23
i

[P][F](x, y, z) as a

function dependent on some bits of χ22
i , i.e., they can leak some internal

state bits information, and can be 0 or 1.

14 Pei Luo et al.

For the correct fault F0 injected at the correct position P0, the following
relationships should hold:

– For any bit in FSχ23
i

[P0][F0].white, this bit should be in ∆χ23
i .white;

– For any bit in FSχ23
i

[P0][F0].black, this bit should be in ∆χ23
i .black;

– For any bit in FSχ23
i

[P0][F0].grey, it can be in ∆χ23
i .white or ∆χ23

i .black,
depending on some internal state bits.

We summarize the above relationships as following set relations:
FSχ23

i
[P][F].white ⊆ ∆χ23

i .white

FSχ23
i

[P][F].black ⊆ ∆χ23
i .black

∆χ23
i .white ⊆ {FSχ23

i
[P][F].white ∪ FSχ23

i
[P][F].grey}

∆χ23
i .black ⊆ {FSχ23

i
[P][F].black ∪ FSχ23

i
[P][F].grey}

. (7)

By checking relationships in (7), the attacker can exclude many positions
and fault values. If only one position with one fault value satisfies these rela-
tionships, the injected fault is discovered. All the FSχ23

i
[P0][F0].grey bits now

are mapped to either zero (white) or one (black) in the observed differentials,
and therefore the internal state bits can be recovered.

We implement the attacks on both interleaved and non-interleaved ver-
sions of Keecak implementations in C++ [26], and run all the fault signature
generation and mapping between the observed differential and the hypoth-
esized signatures on a workstation, which consists of an Intel(R) Core(TM)
i7-2600 CPU @ 3.40GHz and 8GB memory. Results show that our one-time
fault signature generation algorithm takes about 14.5s for offline execution,
and it takes less than 0.3 ms to find the correct injected fault and recover the
internal state bits from one fault.

For the non-interleaved version of SHA-3, using our algorithm, the attacker
can find the unique injected fault with probability 99.13% under single-byte
fault model. For the rest 0.87% probability, more than one faults satisfy the
relationships in (7). For interleaved version, the attacker can find the unique
fault with 100% probability under one single-byte fault injection. We define
such unique faults as effective faults. As only effective faults are useful for
identifying state bits, the higher percentage of the effective fault, the more
efficient the attacks will be.

We also check our algorithms under other fault models. For the single-
bit fault model used in [22], our algorithms find the unique faults with 100%
probability. For the single-word (16-bit) fault model, the effective fault rate
is about 40% for both interleaved and non-interleaved implementations. This
is because for single-word faults, most bits of the final digest H (and inter-
nal state θ23o) will be polluted (more confusion), and therefore the difference
between the signatures of two faults is less distinct.

As the results for non-interleaved and interleaved implementations are sim-
ilar, and the methods for fault identification and χ22

i bits recovery are the same
for these two implementations, the rest of this paper presents only results on
non-interleaved implementation, and focuses on the single-byte fault model.

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 15

4.2 χ22
i Bits Recovery

Previous sections introduce the algorithms to derive fault signatures and use
the signatures to infer the injected fault information. In this section, we de-
scribe the algorithms to recover bits of the internal state χ22

i .

As demonstrated in Fig. 6 and Section 3.2.2, each bit of FSχ23
i

may involve

one or several bits of χ22
i . Once the unique fault value at a certain position

is identified, all the ’x’ bits in the FSχ23
i

are known to be zero or one. First,

those bits that only depend on a single bit of χ22
i are checked to recover the

corresponding χ22
i bits. Then these newly recovered χ22

i bits are used in those
signature bits that depend on multiple χ22

i bits to recover other bits.

Note that for each single-bit fault injected at θ22i , 22 bits of χ22
i can be

recovered. With a multi-bit fault (n-bit) injected at θ22i , up to 22 ∗ n bits can
be recovered. However, the θ23 operation may cancel some χ22

i bits by the
XOR operation, and the number of χ22

i bits that can be recovered by an n-bit
fault is at most 22 ∗ n.

For fault 1 ≤ F ≤ 255 on a byte, the distribution of the number of flipped
θ22i bits (i.e., n) is shown in Fig. 7(a). We conduct an experiment to find
the average number of bits recovered by each fault injected. We randomly
generate 105 messages, and inject random faults at random positions, and
count the recovered χ22

i bits for each fault injected. The corresponding results
are shown in Fig. 7(b), in which the x-axis is number of recovered χ22

i bits,
and the y-axis is the corresponding ratio of faults among all 255 faults.

1 2 3 4 5 6 7 8
0

20

40

60

80

(a) Number of flipped θ
22

i
 bits

N
u

m
b

e
r

o
f

fa
u

lt
s

40 60 80 100 120
0

0.005

0.01

0.015

0.02

(b) Number of recovered χ
22

i
 bits

F
re

q
u

e
n

c
y

Fig. 7: Distribution of the number of recovered χ22
i bits for single-byte faults

We define the average number of recovered bits for each injected fault as α,
and the simulation results of Fig. 7(b) show that α is about 74.97 for randomly
injected single-byte faults. We assume the l-th fault can recover ωl new bits of
χ22
i that have not been recovered by the previous l − 1 faults. We denote the

total number of χ22
i bits recovered by the first l injected faults as Ωl:

Ωl =

l∑
j=1

ωj . (8)

16 Pei Luo et al.

For the l-th fault, the previous l − 1 faults have already recovered Ωl−1
bits of χ22

i , thus the ratio of unrecovered bits can be denoted as 1600−Ωl−1

1600 .
For random messages and randomly injected faults, we can assume that these
1600−Ωl−1 bits are randomly distributed in the 1, 600-bit χ22

i state. For SHA-
3, we can simplify this problem by assuming that the probability for each bit
to be recovered is equal. Thus, for the α bits of χ22

i recovered by the l-th fault,
the number of χ22

i bits that have not been recovered by previous l − 1 faults
can be denoted as:

ωl =
1600−Ωl−1

1600
· α (9)

For the first injected fault, there will be no collision and thus ω1 = α, which
is 74.97 for randomly injected single-byte fault according to the results in Fig.
7. Thus we can plug this result into (8) and (9) to emulate the attack process
and show the theoretical result in Fig. 8, where the x-axis is the number of
random faults injected, and the y-axis is the corresponding total number of χ22

i

bits recovered. To simulate the attacks on SHA-3, we randomly generate 105

messages, and inject 200 random faults at random positions for each message.
The experimental attack results are also shown in Fig. 8.

10 20 30 40 50 60 70 80 90 100 110 120
0

200

400

600

800

1000

1200

1400

1600

Number of injected faults

N
um

be
r

of
 r

ec
ov

er
ed

 χ
22 i

 b
its

Random fault injection
Theoretical result

Fig. 8: Recover process

Fig. 8 shows that the theoretical result matches the experimental result
very well. It also shows that by injecting random errors into θ22i , the attacker
can recover all the 1, 600 bits of χ22

i using about 120 random faults. Comparing
with the attacks on SHA3-384/512 proposed in [22], our method needs much
smaller number of faults to recover the whole internal state under relaxed
fault models. We also test the theoretical model under random single-bit fault
model used in [22], and the experimental result and theoretical result match
very well, shown in Fig. 14 in Section 6.

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 17

5 Differential Fault Analysis of SHA3-224 and SHA3-256

Section 4 shows the method to identify the injected faults and to recover the
internal state χ22

i bits for SHA3-384 and SHA3-512. However, these methods
cannot be applied to SHA3-224 and SHA3-256 directly, where the χ23 opera-
tion cannot be inverted to obtain the input rows with each output row only
partially known. In this section, we show the method to recover χ23

i bits first,
and then use these intermediate state bits to recover χ22

i of SHA3-224 and
SHA3-256. We propose two improved attacks, presented in Section 5.2 and
Section 5.3 correspondingly.

5.1 Basic Attacks of SHA3-224 and SHA3-256

For SHA3-224 and SHA3-256, only partial bottom plane of the hash output
is observable, i.e., no more than four bits in each row of χ23

o on the bottom
plane are known. In Section 5.1.1, we show that with limited information, part
of χ23

i on the bottom plane can still be recovered from the observable digest.
Attack details using the recovered χ23

i information will be presented in Section
5.1.2.

5.1.1 χ23
i Bits Recovery from the Observable Digest

For simplicity, we use one row in χ23 operation as an example here. We express
the input bits (ai, bi, ci, di, ei) as functions over the output bits (ao, bo, co, do, eo)
through χ−1 operation as:

ai = ao ⊕ bo ·
(
eo ⊕ co ⊕ eo · do

)
bi = bo ⊕ co ·

(
ao ⊕ do ⊕ ao · eo

)
ci = co ⊕ do ·

(
bo ⊕ eo ⊕ bo · ao

)
di = do ⊕ eo ·

(
co ⊕ ao ⊕ co · bo

)
ei = eo ⊕ ao ·

(
do ⊕ bo ⊕ do · co

) . (10)

For SHA3-256, for each row, bit eo is unknown while (ao, bo, co, do) are
observable by the attacker; for SHA3-224, bit eo is unknown for the first 32
rows while both do and eo are unknown for the remaining 32 rows. For the
equations in (10), we identify the cases where the input bits are independent of
the unknown output bits, and have the following observations for SHA3-256:

– For ai, if do = 1, ai = ao ⊕ bo · co; if bo = 1, ai = ao. For both situations,
the attacker can retrieve ai without knowledge of eo. The probability of
do = 1 and the probability of bo = 1 are 0.5 respectively, and thus the total
probability of do = 1 or bo = 1 is 0.75, which means that the value of ai
can be recovered with a probability of 0.75.

18 Pei Luo et al.

– For bi, if ao = 0, bi = bo⊕co ·do; if co = 1, bi = bo. Similarly, the probability
of recovering bi with unknown eo is also 0.75.

– For ci, if do = 1, ci = co, and the probability of recovering ci is 0.5.
– For di, if co ⊕ ao ⊕ co · bo = 0, di = do, and the probability of recovering di

is 0.5.
– The value of ei always depends on eo, and the attacker cannot retrieve ei

without knowledge of eo.

In conclusion, for SHA3-256, the attacker can recover the bits in the first
and second lanes of the bottom plan of χ23

i with 0.75 probability, and the bits
in the third and fourth lane with 0.5 probability. In total, the attacker can
recover 160 bits of χ23

i theoretically. Similarly, for SHA3-224, the attacker can
use the same method to recover 112 bits of χ23

i theoretically.

We propose a practical method to recover χ23
i bits. For the same example

shown in (10), while ao, bo, co, do are observable by the attacker, the unknown
eo can only be either 0 or 1, then we can make guesses of both situations
and write them as row0

o = {ao, bo, co, do, 0} and row1
o = {ao, bo, co, do, 1}. For

both situations, we can calculate the corresponding input row0
i , row

1
i using χ

inversion operation:{
{a0i , b0i , c0i , d0i , e0i } = χ−1({ao, bo, co, do, 0})
{a1i , b1i , c1i , d1i , e1i } = χ−1({ao, bo, co, do, 1})

. (11)

Take bit ai as an example here, the value of ai can only be a0i or a1i :

1. If a0i = a1i , then the value of ai does not depend on the value of eo and this
is the correct recovered value for ai;

2. If a0i 6= a1i , then the value of ai depends on the value of eo, and attacker
cannot recover ai without knowing ei.

We implement this method for both SHA3-224 and SHA3-256 in C++, and
randomly generate 105 input messages for each of them. Results show that the
proposed algorithm can correctly recover 160.12 bits of χ23

i for SHA3-256 and
111.84 bits of χ23

i for SHA3-224 on average for these 105 trials, which conform
to the theoretical results given in the previous section.

Using the above method, the attacker can recover part of the χ23
i bits in the

bottom plane from the original digest H, and faulty χ′23i bits for faulty digest
H ′. Using the recovered χ23

i (X, 0, Z) and χ′23i (X, 0, Z) bits, the attacker can
calculate the corresponding ∆χ23

i (X, 0, Z) bits. Note that for SHA3-256, the
attacker can recover about 160 bits of both χ23

i (X, 0, Z) and χ′23i (X, 0, Z) on
average, but the recovered χ23

i and χ′23i may have different locations, and there-
fore the attacker will recover fewer than 160 differential bits of ∆χ23

i (X, 0, Z).
The simulation results show that attacker can recover 136.42 bits of ∆χ23

i for
SHA3-256, and 93.68 bits for SHA3-224 on average for 105 trials, with more
details presented in Table 2.

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 19

5.1.2 Injected Fault Identification and χ22
i Bits Recovery

Using the algorithms in Section 5.1.1, the attacker recovers some bits of∆χ23
i (X, 0, Z)

from the observable output, instead of 320 bits as in other two modes, SHA3-
384 and SHA4-512. We use the same method presented before in Section 4.1 to
match the recovered ∆χ23

i (X, 0, Z) bits against the fault signatures, and apply
the same constraints of (7) to identify the injected fault. Results show that
for SHA3-256, the attacker can uniquely identify the fault with a probability
66.61%. For SHA3-224, the effective fault ratio is 30.67% instead. The results
are shown in Table 2.

Table 2: Simulation results for SHA3-224 and SHA3-256 with fault injected
at θ22i

Number of bits recovered Effective fault
χ23
i ∆χ23

i ratio

SHA3-224 111.84 93.68 30.67%
SHA3-256 160.12 136.42 66.61%

SHA3-384/512 320 320 99.13%

With the injected fault identified, we use the same method to recover the
internal state bits of SHA3-224/256. Simulation results are in Fig. 9. It shows
that attacks on SHA3-224 and SHA3-256 are much less efficient than attacks
on the other two modes with the digest length higher than 320. The shorter
the digest length, the fewer bits of FSχ23

i
and ∆χ23

i are available for internal
bits recovery, and therefore each effective fault injection recovers fewer bits of
χ22
i . Nevertheless, with more effective faults injected to recover groups of bits

one by one, these two modes are also susceptible to DFA.

20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

Number of effective faults injected

N
um

be
r

of
 r

ec
ov

er
ed

 b
its

SHA3−224
SHA3−256
SHA3−384/512

Fig. 9: Number of recovered χ22
i bits for different number of effective faults

In next sections, we propose two methods to improve the fault analysis
attacks of SHA3-224 and SHA3-256.

20 Pei Luo et al.

5.2 Improve the Attacks by Using both FSχ23
i

and FSχ23
o

Previous methods all select χ23
i as the comparison point for fault signatures

and observable differential digest. However, for SHA3-224 and SHA3-256 (d =
224 and 256 respectively), fewer than d bits of ∆χ23

i are available to the
attacker and this will cause information loss in attacks. We find that the fault
signature at χ23

o , FSχ23
o

, if used, can help to extract extra χ22
i bits. This is

because all d bits of ∆χ23
o are available for SHA3-d function, FSχ23

o
can be

used with ∆χ23
o to build constraints similar as in (7). We show in this section

that with the introduction of FSχ23
o

into attacks, both the effective fault ratio
and the number of χ22

i bits recovered by each effective fault increase.

We first present the construction of FSχ23
o

in Section 5.2.1, and then give
the results of fault identification and internal state recovery in Section 5.2.2.

5.2.1 Fault Signature FSχ23
o

Construction

We have known that the fault propagation at χ23
i , FSχ23

i
, are dependent on

both the fault and internal state bits. Through one more step of χ23 operation
on rows, ao = ai ⊕ (b̄i · ci), the fault propagation function is:

∆ao = ∆ai ⊕∆bi · ci ⊕ (1⊕ bi) ·∆ci ⊕∆bi ·∆ci. (12)

Thus FSχ23
o

(x, y, z) can be denoted as (13), which involves χ23
i bits in

addition to fault signature bits FSχ23
i

.

FSχ23
o

(x, y, z) = FSχ23
i

(x, y, z)⊕ FSχ23
i

(x+ 1, y, z) · χ23
i (x+ 2, y, z)

⊕ (1⊕ χ23
i (x+ 1, y, z)) · FSχ23

i
(x+ 2, y, z)

⊕ FSχ23
i

(x+ 1, y, z) · FSχ23
i

(x+ 2, y, z) (13)

Bits in FSχ23
o

can be 0, 1, or a function over χ22
i and χ23

i bits. When com-
paring ∆χ23

o (d-bits) against FSχ23
o

, more constraints are considered so as to
help identify the fault and recover the internal bits. This improves the attacks
in two ways. First, some faults that cannot be identified by the basic attack
before can now be uniquely identified, i.e., the effective fault rate increases.
Second, with a certain effective fault, more χ22

i bits can be recovered because
∆χ23

o and FSχ23
o

are used.

Note here we cannot use ∆χ23
o and FSχ23

o
only for attacks while excluding

using∆χ23
i and FSχ23

i
, this is because only part of FSχ23

o
bits (instead of d bits)

are available. The construction of FSχ23
o

requires knowledge of χ23
i (x, y, z) bits

which are only partially known. Thus attacker should combine information at
χ23
i (∆χ23

i , FSχ23
i

) and χ23
o (∆χ23

o , FSχ23
o

) together for analysis.

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 21

5.2.2 Simulation Results

We construct the fault signature FSχ23
o

and run simulations of the improved
attacks. Simulation results show that the effective fault rate rises from 30.67%
to 49.12% for SHA3-224, and from 53.28% to 78.73% for SHA3-256. The results
of internal state recovery for SHA3-224 and SHA3-256 are shown in Fig. 10.

10 20 30 40 50 60 70 80 90 100 110 120
0

200

400

600

800

1000

1200

1400

1600

Number of effective faults injected

N
u
m

b
e
r

o
f
re

c
o
v
e
re

d
 b

it
s

SHA3−224
SHA3−256
SHA3−384/512

Fig. 10: Number of recovered χ22
i bits for different number of effective faults

After involving FSχ23
o

for attacks, the attack efficiency is improved signif-
icantly for both SHA3-224 and SHA3-256. For example, for SHA3-224, the
results in Fig. 9 shows that the original attack method needs about 200 faults
to recover 1, 300 bits of χ22

i , while the improved method in this section needs
only 82 faults to recover the same number of χ22

i bits. It is worth noting that
the proposed improved attack does not need any extra knowledge of the tar-
get platform, and the generation of fault signature FSχ23

o
does not need much

computation.

5.3 Further Improve the Attacks by Injecting Faults at θ23i

If the attacker can inject faults at multiple points, the attack will achieve higher
efficiency. In previous sections, we assume that the attacker injects only faults
at θ22i . In this section, we explore another fault injection point, the last round
input θ23i , and use more faults to recover internal state bits more efficiently.

For the method proposed in Section 5.2, the effective fault ratio and the
number of recovered χ22

i bits by using the same number of effective injected
faults are still lower than attacks on SHA3-384/512. The reason lies in the fact
that the attacker can recover fewer bits of χ23

i and ∆χ23
i for SHA3-224 and

SHA3-256 than SHA3-384/512 (320 bits). To improve the attack efficiency, we
propose to recover more χ23

i bits first, by injecting faults at the last round
input θ23i of SHA3-224 and SHA3-256.

We first present the details of recovering χ23
i bits in Section 5.3.1, and then

present the recovery of χ22
i bits for this improved attack in Section 5.3.2.

22 Pei Luo et al.

5.3.1 Recovering More χ23
i by Injecting Faults at θ23i

To recover χ23
i bits by injecting faults at θ23i and comparing fault signature and

differential fault at χ23
o , we need to calculate the fault propagation from θ23i to

χ23
o . These faults will propagate through θ, ρ, π and χ operations. The fault

propagation process is exactly the same as in the penultimate round (from θ22i
to χ22

o) as presented in Section 3.2.1. We denote the fault signature at χ23
o for

faults injected at θ23i as FS∗χ23
o

in this section.

Using the faults injected at θ23i , the attacker can recover some remaining
bits of χ23

i on the bottom plane that have not been recovered using the algo-
rithm in Section 5.1.1. Note here that for SHA3-256 and the first 32 rows of
SHA3-224 (with four bits out of five bits of each output row on the bottom
plane known and some input bits (not all the five) recovered), if the attacker
recovers one bit χ23

i (x, 0, z) that has not been recovered using the algorithm
in Section 5.1.1, he can recover all the other unknown bits in this input row.
For example, we assume a0i 6= a1i in (11) and this bit has been recovered by
injecting faults at θ23i , then the attacker can know which assumption of eo
is correct, and then recover all the five bits in this row. This method can be
used for all 64 rows in the bottom plane of SHA3-256 and the first 32 rows of
SHA3-224. In SHA3-224, the remaining rows (χ23

i (X, 0, z), 32 ≤ z < 63) have
two bits unknown, and these two bits can only be recovered by injecting faults
at θ23i separately.

We use both fault signatures at χ23
i (FS∗

χ23
i

) and χ23
o (FS∗χ23

o
) to identify

the faults injected at θ23i . Results show that for both SHA3-224 and SHA3-256,
we can identify the correct fault injected at θ23i with about 20% probability.
After identifying the correct faults injected at θ23i , we can recover all 320 bits
in the bottom plane of χ23

i with multiple faults, and we present the recovery
process in Fig. 11.

5 10 15 20 25 30 35 40 45 50
100

150

200

250

300

Number of effective faults injected

N
u

m
b

e
r

o
f

re
c
o

v
e

re
d

 χ
2

3

i
 b

it
s

SHA3−224
SHA3−256

Fig. 11: Recovery of χ23
i bits in the bottom plane by injecting faults at θ23i

Fig. 11 shows that for SHA3-256, the attacker can recover about 244 bits
of χ23

i using only five effective faults, compared with 160 bits when no faults
injected at θ23i (Table 2). Similar results for SHA3-224 are also presented in

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 23

Fig. 11. Note that the attacker does not need to recover all the bits of χ23
i

in the bottom plane, he can recover part of χ23
i to improve the efficiency of

recovering χ22
i . We will show how the recovery of χ22

i changes with the number
of χ23

i bits recovered in next section.

5.3.2 Simulation Results

With more χ23
i bits recovered, the attacker can recover and construct more

bits of ∆χ23
i and FSχ23

o
, and use them for attacks. For simplicity, we make the

following assumptions for the attacker:

– The attacker first recovers part of χ23
i bits using algorithm presented in

Section 5.1.1 (with no fault injected at θ23i).
– The attacker then injects faults at θ23i to recover the remaining bits of χ23

i .

For simplicity, we assume the attacker can randomly recover from 0 to 64
rows of χ23

i using the algorithm in Section 5.1.1. For each number of recovered
rows, we inject random faults at θ22i to calculate the effective fault ratio and
show the results in Fig. 12.

0 10 20 30 40 50 60
50

60

70

80

90

100

Number of recovered rows of χ
23

i

P
e

rc
e

n
ta

g
e

 o
f

e
ff

e
c
ti
v
e

 f
a

u
lt
 (

%
)

SHA3−224
SHA3−256

Fig. 12: Effective fault ratio with different number of χ23
i rows recovered

Fig. 12 shows that with more rows of χ23
i recovered, the attacker can iden-

tify the faults injected at θ22i with higher rate. For example, for SHA3-224, the
effective fault ratio is 53.28% when only part of χ23

i bottom plane has been
recovered using the algorithm in Section 5.1.1, and this ratio rises to 88.34%
when all 64 rows (320 bits) of χ23

i bottom plane are recovered. Therefore, by
recovering more bits of χ23

i in the bottom plane, the effective fault ratio will
increase for both SHA3-224 and SHA3-256.

With knowledge of more χ23
i bits, the attacker can build more equations

for χ22
i bits like in Fig. 6, then the attacker can recover more χ22

i bits for each
injected fault on average. To verify the assumption, we assume the attacker
can recover from 0 to 64 rows of χ23

i , and we run attacks on SHA3-224 and
SHA3-256 to recover all the bits of χ22

i . We present the attack results on

24 Pei Luo et al.

20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

1400

1600

Number of effective faults injected

N
u

m
b

e
r

o
f

re
c
o

v
e

re
d

 b
it
s

0 rows
16 rows
32 rows
48 rows
64 rows

Fig. 13: Number of recovered χ22
i bits for different number of effective faults

with a number of χ23
i rows recovered, SHA3-224

SHA3-224 with different numbers of rows recovered in Fig. 13. For SHA3-256,
the results are similar, and we will not present the details here.

Fig. 13 shows that the attacker needs smaller number of effective faults to
recover all the bits of χ22

i if he has recovered more rows of χ23
i . For example,

if he has knowledge of the whole bottom plane of χ23
i , he can recover 1590

bits of χ22
i using 110 effective random faults on average. For attacker who

cannot inject fault into the last round input, using the improved method in
Section 5.2.1, he can only recover about 1, 412 bits (using 110 effective faults)
instead.

In conclusion, by injecting faults at θ23i to recover more state bits of χ23
i , the

attacker can identify the faults injected at θ22i with a higher rate. Consequently,
the attacker needs a smaller number of effective faults to recover the same
number of χ22

i bits.
As the improved attack method in Section 5.2 does not require extra knowl-

edge of the target system, it should be applied to DFA directly, while the
improvement proposed in this section can be applied if the attacker has the
ability to inject extra faults at θ23i .

6 Optimized Attacks with Chosen Faults

In this section, we show an algorithm to optimize the attack if the injected
faults (in terms of faulty byte location and fault value) can be controlled.

As shown in the previous sections, injecting an n-bit fault into θ22i can
recover up to 22 ∗ n bits of χ22

i , and different faults may have overlapping χ22
i

bits. The most efficient attack method should avoid such overlap and use the
smallest number of faults to recover the entire internal state. In this section,
we show an optimized attack with the smallest number of faults into θ22i to
recover all the bits of χ22

i . This optimization is based on SHA3-384/512 for
simplicity, and it can be easily extended to SHA3-224 and SHA3-256.

We formulate this problem into a set covering problem [29]. We assume the
attacker can inject n different faults into θ22i , denote them as F = {f1, f2, · · · , fn},

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 25

and the bits to recover is a universe U for all the χ22
i bits. For each fault

fi, it can be used to recover a subset of U and we denote it as Ui, where
U1, U2, · · · ⊆ U , and we denote the cost to inject fault fi as ci. The problem
is to find a set of I ⊆ {1, 2, · · · , n} that minimize the total cost Σi∈Ici and
∪i∈IUi = U . The set covering problem is an NP-hard problem. We adopt a
greedy heuristic to find solutions, given in Algorithm 1.

Algorithm 1 Optimization of the fault injection attacks
Input: Element set U , subset set U = {U1, U2, · · · , Un} and their costs
Output: Set cover C with the minimum cost

1: C ← ∅
2: while C 6= U do
3: for all i = 1 to n do
4: if Ui ∈ C then
5: αi = 0;
6: else
7: αi =

|Ui−C|
ci

8: end if
9: end for

10: Choose k s.t. αk = MAX({αi}) ;
11: C ← C ∪ Uk;
12: end while

Each time, the algorithm chooses a set that gives the highest gain (number
of new bits), and we assume that the cost for each set/fault injection is the
same (all ci = 1). We use this algorithm to find the “best” fault injection
solutions under our byte-level fault model, and the result is shown in Fig.
14(a). It demonstrates that for DFA with byte-level faults, the attacker needs
to inject at least 17 faults to recover all the 1, 600 bits of χ22

i , while random
fault injection attacks require about 120 faults to retrieve all the bits for
SHA3-384/512.

We also use the method and algorithm to analyze the DFA on SHA-3 under
single-bit fault model used in [22]. Three curves are presented in Fig. 14(b):
the random fault injection experimental result, the random fault injection
theoretical prediction, and the optimized attack using the greedy heuristic.
Under the single-bit fault model, each fault injected at θ22i can be used to
recover 22 bits of χ22

i , and thus α = 22 for the theoretical result. Fig. 14(b)
shows that the theoretical result matches the simulation result for random
fault injection very well. It also shows that the attacker needs to inject at
least 129 single-bit selected faults to recover all the 1, 600 bits of χ22

i , while he
needs about 500 single-bit random faults to recover the state.

The optimized attack we present in this section is the lower bound of
the proposed differential fault attacks. For SHA3-224 and SHA3-256, similar
method can be used to find the lower bound of the attacks.

26 Pei Luo et al.

50 100 150 200 250 300 350 400 450 500

500

1000

1500

Number of injected faults

N
u

m
b

e
r

o
f

re
c
o

v
e

re
d

 χ
2
2

i
 b

it
s

(b) χ
22

i
 recovery process under single−bit fault model

Random fault injection
Optimized attack
Theoretical result

20 40 60 80 100 120

500

1000

1500

Number of injected faults

N
u

m
b

e
r

o
f

re
c
o

v
e

re
d

 χ
2
2

i
 b

it
s

(a) χ
22

i
 recovery process under single−byte fault model

Random fault injection
Optimized attack

Fig. 14: Optimized fault injection attacks at byte level

7 Discussions

7.1 SHA-3 Systems with Long Input Message

In previous sections, we simplify the analysis by assuming that only one f
function is involved for absorbing and squeezing. In this section, we extend
the proposed attack by assuming that the size of the input message can be
larger than the bitrate r. Meanwhile, we assume that the digest size can be
larger than r, instead of just d bits for SHA3-d function. Therefore, multiple
f functions may be involved for absorbing and squeezing.

First of all, we assume that the digest size is still d-bit for SHA3-d function:

– There are n (n ≥ 1) f functions (f0 · · · fn−1) involved for absorbing;
– There are m (m ≥ 0) f functions (fn · · · fn+m−1) involved for squeezing,

as r > d for all four SHA3-d functions, no extra f function will be involved
for squeezing (m = 0);

– The attacker has control of the input message part of P0 · · · Pn−1 in MAC
mode, while he has no access to the messages when SHA-3 is used in hash
mode;

– The attacker can observe the digest z0 · · · zm in both hash and MAC
mode.

For MAC-Keccak system, the attacker can inject faults into the penulti-
mate round input of the last permutation fn−1, and use the proposed method

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 27

in this paper to recover the input of fn−1, fn−1(in). Combining with Pn−1,
the attacker can recover fn−2(in). There are two possible situations for the
key length lk here:

– If lk ≤ r, the attacker can iteratively recover P0 which contains the key
used for MAC, and therefore recover the secret key.

– If lk > r, for example, all the bits of P0 and part of P1 bits are key bits,
then the attacker can recover f1(in), which is

f1(in) = f(P0||0c)⊕ (P1||0c), (14)

then the attacker will be unable to recover the key bits contained in P0

and P1 directly. The attacker needs to make assumption of the key bits in
P1 so as to recover the key bits in P0. The difficulty increases rapidly with
the number of the key bits in P1.

As the key size in MAC system is usually much smaller than r (for example,
128 bits or 256 bits), the proposed DFA is a great threat for SHA-3 based MAC
systems. We propose to increase the length of MAC key for higher resillence
against fault injection attacks.

For SHA-3 system in general hash mode, the attacker will have no access
to the input message P0 · · · Pn−1. Therefore, after recovering fn−1(in), he
will be unable to further recover fn−2(out) without knowledge of Pn−1. Thus
the attacker will be unable to recover the original input message in hash mode
directly if the message length is greater than bitrate r.

For modified SHA-3 system which allows the digest size larger than d, there
may be extra f functions involved for squeezing, and the digest comes from
multiple zi. As all the zi are observable, z0 will be used to attack fn−1. The
length of z0 will be r-bit, which is 1,152, 1,088, 832 and 576-bit for SHA3-
224, SHA3-256, SHA3-384 and SHA3-512 respectively. More bits than original
(224, 256, 384 and 512-bit) are available, and the attacks become easier. In
conclusion, the proposed DFA method is still applicable for SHA-3 systems
which involve extra f functions for squeezing.

7.2 Countermeasure against Differential Fault Analysis

As unprotected SHA-3 systems are vulnerable to DFAs, countermeasures should
be added into SHA-3 systems to improve their resilience against DFA.

One method is to implement detection of system disturbance which are
used to inject faults. For example, a clock glitch and power supply disturbance
detection module [30,31] can be inserted into SHA-3 implementations to detect
fault injections.

Another kind of widely used countermeasures relies on some redundancy
to check the integrity of the intermediate results, such that errors caused by
injected faults will be detected. For example, parity checking codes are used

28 Pei Luo et al.

to detect the injected faults in SHA-3 [32]. Similarly, another copy of modified
Keccak implementation can be introduced into the system for error detection
[33,34]. Such schemes can detect errors in the system caused by injected faults,
and thus the attacker will have no access to the faulty results to conduct DFA.

8 Conclusion and Future Work

In this paper, we propose efficient DFA methods for all four modes of SHA-3
functions under relaxed single-byte fault models. Results show that our method
can effectively identify the injected faults, and then recover the corresponding
internal state bits for all four SHA-3 functions. Meanwhile, we also present the
lower bound of the proposed attacks and extend the attacks to systems with
input message longer than bitrate r.

The proposed method can possibly be applied to other relaxed fault models.
Under the word (16-bit) fault model, the effective fault ratio is much lower
for SHA3-384/512, but the attacks can still work, while it cannot identify
any effective fault for SHA3-224 and SHA3-256. Our future work will address
attacks on SHA3-224 and SHA3-256 under more relaxed 16-bit and 32-bit fault
models. Another line of future work would include more efficient and effective
methods to protect SHA-3 platforms against fault injection attacks.

Acknowledgements This work was supported in part by National Science Foundation un-

der grants SaTC-1314655 and MRI-1337854. Simulation code used in this paper is available

at http://tescase.coe.neu.edu/.

References

1. G. Bertoni, J. Daemen, M. Peeters, and G. Assche, “The Keccak refer-
ence,” Submission to NIST (Round 3), January, 2011.

2. N. F. Pub, “FIPS PUB 202. SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions,” Federal Information Processing Stan-
dards Publication, 2015.

3. E. Biham and A. Shamir, “Differential fault analysis of secret key cryp-
tosystems,” in Advances in Cryptology – CRYPTO, Aug. 1997, pp. 513–
525.

4. G. Piret and J.-J. Quisquater, “A differential fault attack technique
against SPN structures, with application to the AES and KHAZAD,” in
5th International Wkshp on Cryptographic Hardware and Embedded Sys-
tems, Cologne, Germany, September 8–10, 2003, pp. 77–88.

5. H. Chen, W. Wu, and D. Feng, “Differential fault analysis on CLEFIA,”
in 9th International Conference on Information and Communications Se-
curity, Zhengzhou, China, December 12-15, 2007, pp. 284–295.

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 29

6. S. Karmakar and D. R. Chowdhury, “Differential fault analysis of
MICKEY-128 2.0,” in Wkshp on Fault Diagnosis and Tolerance in Cryp-
tography, Aug 2013, pp. 52–59.

7. S. Banik and S. Maitra, “A differential fault attack on MICKEY 2.0,”
in 15th International Wkshp on Cryptographic Hardware and Embedded
Systems, Santa Barbara, CA, USA, August 20-23, 2013, pp. 215–232.

8. S. Banik, S. Maitra, and S. Sarkar, “A differential fault attack on the Grain
family of stream ciphers,” in 14th International Wkshp on Cryptographic
Hardware and Embedded Systems, Leuven, Belgium, September 9-12, 2012,
pp. 122–139.

9. P. Dey, A. Chakraborty, A. Adhikari, and D. Mukhopadhyay, “Improved
practical differential fault analysis of Grain-128,” in Proceedings of the
2015 Design, Automation & Test in Europe Conference & Exhibition,
2015, pp. 459–464.

10. L. Hemme and L. Hoffmann, “Differential fault analysis on the SHA1
compression function,” in Wkshp on Fault Diagnosis and Tolerance in
Cryptography, Sept. 2011, pp. 54–62.

11. R. Altawy and A. M. Youssef, “Differential fault analysis of Streebog,”
in 11th International Conference on Information Security Practice and
Experience, Beijing, China, May 5-8, 2015, pp. 35–49.

12. W. Li, Z. Tao, D. Gu, Y. Wang, Z. Liu, and Y. Liu, “Differential fault
analysis on the MD5 compression function,” Journal of Computers, no. 11,
2013.

13. W. Fischer and C. A. Reuter, “Differential fault analysis on Grøstl,” in
Wkshp on Fault Diagnosis and Tolerance in Cryptography, Sept. 2012, pp.
44–54.

14. C. Boura and A. Canteaut, “A zero-sum property for the KECCAK-f
permutation with 18 rounds,” in IEEE International Symposium on In-
formation Theory, June 2010, pp. 2488–2492.

15. S. Das and W. Meier, “Differential biases in reduced-round keccak,” in
Progress in Cryptology – AFRICACRYPT 2014: 7th International Con-
ference on Cryptology in Africa, Marrakesh, Morocco, May 28-30, 2014,
pp. 69–87.

16. I. Dinur, O. Dunkelman, and A. Shamir, “Collision attacks on up to 5
rounds of SHA-3 using generalized internal differentials,” in 20th Interna-
tional Workshop on Fast Software Encryption, Singapore, March 11-13,
2013, pp. 219–240.

17. I. Dinur, P. Morawiecki, J. Pieprzyk, M. Srebrny, and M. Straus, “Cube
attacks and cube-attack-like cryptanalysis on the round-reduced Keccak
sponge function,” in Advances in Cryptology – EUROCRYPT: 34th An-
nual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Sofia, Bulgaria, April 26-30, 2015, pp. 733–761.

18. P. Luo, Y. Fei, X. Fang, A. A. Ding, D. R. Kaeli, and M. Leeser, “Side-
channel analysis of MAC-Keccak hardware implementations,” in Proceed-
ings of the Fourth Wkshp on Hardware and Architectural Support for Se-
curity and Privacy, June 2015.

30 Pei Luo et al.

19. P. Morawiecki, J. Pieprzyk, and M. Srebrny, “Rotational cryptanalysis
of round-reduced keccak,” in 20th International Wkshp on Fast Software
Encryption, Singapore, March 11-13, 2013, pp. 241–262.

20. M. Naya-Plasencia, A. Rck, and W. Meier, “Practical analysis of reduced-
round Keccak,” in Progress in Cryptology – INDOCRYPT 2011: 12th In-
ternational Conference on Cryptology in India, Chennai, India, December
11-14, 2011, pp. 236–254.

21. M. Taha and P. Schaumont, “Side-channel analysis of MAC-Keccak,” in
IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), June 2013, pp. 125–130.

22. N. Bagheri, N. Ghaedi, and S. Sanadhya, “Differential fault analysis of
SHA-3,” in Progress in Cryptology – INDOCRYPT 2015: 16th Interna-
tional Conference on Cryptology in India, Bangalore, India, December 6-9,
2015, pp. 253–269.

23. P. Luo, Y. Fei, L. Zhang, and A. Ding, “Differential fault analysis of SHA3-
224 and SHA3-256,” in Thirteenth Wkshp on Fault Diagnosis and Toler-
ance in Cryptography, Aug. 2016.

24. J. Daemen, “Cipher and hash function design strategies based on linear
and differential cryptanalysis,” Ph.D. dissertation, Doctoral Dissertation,
March 1995, KU Leuven, 1995.

25. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Cryptographic
sponge functions,” Submission to NIST (Round 3), 2011.

26. “Reference and optimized code in C,” http://keccak.noekeon.org/
KeccakReferenceAndOptimized-3.2.zip.

27. P. Pessl and M. Hutter, “Pushing the limits of SHA-3 hardware implemen-
tations to fit on RFID,” in 15th International Wkshp on Cryptographic
Hardware and Embedded Systems, Santa Barbara, CA, USA, August 20-
23, 2013, pp. 126–141.

28. G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer,
“Keccak implementation overview,” Report, STMicroelectronics, Antwerp,
Belgium, 2012.

29. M. Karpinski and A. Zelikovsky, “Approximating dense cases of cover-
ing problems,” in DIMACS Wkshp on Network Design: Connectivity and
Facilites Location, 1998, pp. 169–178.

30. K. A. Bowman, C. Tokunaga, J. W. Tschanz, A. Raychowdhury, M. M.
Khellah, B. M. Geuskens, S.-L. L. Lu, P. A. Aseron, T. Karnik, and V. K.
De, “All-digital circuit-level dynamic variation monitor for silicon debug
and adaptive clock control,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 58, no. 9, pp. 2017–2025, 2011.

31. P. Luo, C. Luo, and Y. Fei, “System clock and power supply cross-checking
for glitch detection,” Cryptology ePrint Archive, Report 2016/968, 2016.

32. P. Luo, C. Li, and Y. Fei, “Concurrent error detection for reliable SHA-3
design,” in 26th edition on Great Lakes Symposium on VLSI, May 2016,
pp. 39–44.

33. P. Luo, L. Zhang, Y. Fei, and A. A. Ding, “An improvement of both secu-
rity and reliability for Keccak implementations on smart card,” Cryptology

http://keccak.noekeon.org/KeccakReferenceAndOptimized-3.2.zip
http://keccak.noekeon.org/KeccakReferenceAndOptimized-3.2.zip

Differential Fault Analysis of SHA-3 under Relaxed Fault Models 31

ePrint Archive, Report 2016/214, 2016.
34. S. Bayat-Sarmadi, M. Mozaffari-Kermani, and A. Reyhani-Masoleh, “Effi-

cient and concurrent reliable realization of the secure cryptographic SHA-3
algorithm,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 33, no. 7, pp. 1105–1109, 2014.

	Introduction
	Preliminaries of SHA-3 and Differential Fault Analysis
	Fault Propagation and Fault Signature
	Differential Fault Analysis of SHA3-384 and SHA3-512
	Differential Fault Analysis of SHA3-224 and SHA3-256
	Optimized Attacks with Chosen Faults
	Discussions
	Conclusion and Future Work

