175 research outputs found

    Exploring viral infection using single-cell sequencing.

    Get PDF
    Single-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome. In this review, we will focus on recent studies that use single-cell sequencing to explore viral diversity and cell variability in response to viral replication

    The use of single-cell RNA-Seq to understand virus-host interactions.

    Get PDF
    Single-cell analyses allow uncovering cellular heterogeneity, not only per se, but also in response to viral infection. Similarly, single cell transcriptome analyses (scRNA-Seq) can highlight specific signatures, identifying cell subsets with particular phenotypes, which are relevant in the understanding of virus-host interactions

    Zika virus infection:in vitro models of disease pathogenesis

    Get PDF

    Zika virus infection:in vitro models of disease pathogenesis

    Get PDF
    In this thesis, we established primary and cell line models to study the pathogenesis of the Zika virus. These models are important not only to identify markers of disease pathogenesis but also to screen the antiviral activity of various drugs

    Arboviruses: markers of disease severity

    Get PDF

    Arboviruses: markers of disease severity

    Get PDF

    Evolution of Two Major Zika Virus Lineages: Implications for Pathology, Immune Response, and Vaccine Development

    Get PDF
    Zika virus (ZIKV) became a public health emergency of global concern in 2015 due to its rapid expansion from French Polynesia to Brazil, spreading quickly throughout the Americas. Its unexpected correlation to neurological impairments and defects, now known as congenital Zika syndrome, brought on an urgency to characterize the pathology and develop safe, effective vaccines. ZIKV genetic analyses have identified two major lineages, Asian and African, which have undergone substantial changes during the past 50 years. Although ZIKV infections have been circulating throughout Africa and Asia for the later part of the 20th century, the symptoms were mild and not associated with serious pathology until now. ZIKV evolution also took the form of novel modes of transmission, including maternal–fetal transmission, sexual transmission, and transmission through the eye. The African and Asian lineages have demonstrated differential pathogenesis and molecular responses in vitro and in vivo. The limited number of human infections prior to the 21st century restricted ZIKV research to in vitro studies, but current animal studies utilize mice deficient in type I interferon (IFN) signaling in order to invoke enhanced viral pathogenesis. This review examines ZIKV strain differences from an evolutionary perspective, discussing how these differentially impact pathogenesis via host immune responses that modulate IFN signaling, and how these differential effects dictate the future of ZIKV vaccine candidates
    corecore