3 research outputs found

    Unsupervised text Feature Selection using memetic Dichotomous Differential Evolution

    Get PDF
    Feature Selection (FS) methods have been studied extensively in the literature, and there are a crucial component in machine learning techniques. However, unsupervised text feature selection has not been well studied in document clustering problems. Feature selection could be modelled as an optimization problem due to the large number of possible solutions that might be valid. In this paper, a memetic method that combines Differential Evolution (DE) with Simulated Annealing (SA) for unsupervised FS was proposed. Due to the use of only two values indicating the existence or absence of the feature, a binary version of differential evolution is used. A dichotomous DE was used for the purpose of the binary version, and the proposed method is named Dichotomous Differential Evolution Simulated Annealing (DDESA). This method uses dichotomous mutation instead of using the standard mutation DE to be more effective for binary purposes. The Mean Absolute Distance (MAD) filter was used as the feature subset internal evaluation measure in this paper. The proposed method was compared with other state-of-the-art methods including the standard DE combined with SA, which is named DESA in this paper, using five benchmark datasets. The F-micro, F-macro (F-scores) and Average Distance of Document to Cluster (ADDC) measures were utilized as the evaluation measures. The Reduction Rate (RR) was also used as an evaluation measure. Test results showed that the proposed DDESA outperformed the other tested methods in performing the unsupervised text feature selection

    Differential evolution memetic document clustering using chaotic logistic local search

    No full text
    In this paper, we propose a Memetic-based clustering method that improves the partitioning of document clustering. Our proposed method is named as Differential Evolution Memetic Clustering (DEMC). Differential Evolution (DE) is used for the selection of the best set of cluster centres (centroids) while the Chaotic Logistic Search (CLS) is used to enhance the best set of solutions found by DE. For the purpose of comparison, the DEMC is compared with the basic DE, Differential Evolution Simulated Annealing (DESA) and the Differential Evolution K-Means (DEKM) methods as well as the traditional partitioning clustering using the K-means. The DEMC is also compared with the recently proposed Chaotic Gradient Artificial Bee Colony (CGABC) document clustering method. The reuters-21578, a pair of the 20-news group, classic 3 and TDT benchmark collection (TDT5) along with real-world six-event-crimes datasets are used in the experiments in this paper. The results showed that the proposed DEMC outperformed the other methods in terms of the convergence rate measured by the fitness function (ADDC) and the compactness of the resulted clusters measured by the F-macro and F-micro measures

    Document clustering with optimized unsupervised feature selection and centroid allocation

    Get PDF
    An effective document clustering system can significantly improve the tasks of document analysis, grouping, and retrieval. The performance of a document clustering system mainly depends on document preparation and allocation of cluster positions. As achieving optimal document clustering is a combinatorial NP-hard optimization problem, it becomes essential to utilize non-traditional methods to look for optimal or near-optimal solutions. During the allocation of cluster positions or the centroids allocation process, the extra text features that represent keywords in each document have an effect on the clustering results. A large number of features need to be reduced using dimensionality reduction techniques. Feature selection is an important step that can be used to reduce the redundant and inconsistent features. Due to a large number of the potential feature combinations, text feature selection is considered a complicated process. The persistent drawbacks of the current text feature selection methods such as local optima and absence of class labels of features were addressed in this thesis. The supervised and unsupervised feature selection methods were investigated. To address the problems of optimizing the supervised feature selection methods so as to improve document clustering, memetic hybridization between filter and wrapper feature selection, known as Memetic Algorithm Feature Selection, was presented first. In order to deal with the unlabelled features, unsupervised feature selection method was also proposed. The proposed unsupervised feature selection method integrates Simulated Annealing to the global search using Differential Evolution. This combination also aims to combine the advantages of both the wrapper and filter methods in a memetic scheme but on an unsupervised basis. Two versions of this hybridization were proposed. The first was named Differential Evolution Simulated Annealing, which uses the standard mutation of Differential Evolution, and the second was named Dichotomous Differential Evolution Simulated Annealing, which used the dichotomous mutation of the differential evolution. After feature selection two centroid allocation methods were proposed; the first is the combination of Chaotic Logistic Search and Discrete Differential Evolution global search, which was named Differential Evolution Memetic Clustering (DEMC) and the second was based on using the Gradient search using the k-means as a local search with a modified Differential Harmony global Search. The resulting method was named Memetic Differential Harmony Search (MDHS). In order to intensify the exploitation aspect of MDHS, a binomial crossover was used with it. Finally, the improved method is named Crossover Memetic Differential Harmony Search (CMDHS). The test results using the F-measure, Average Distance of Document to Cluster (ADDC) and the nonparametric statistical tests showed the superiority of the CMDHS over the baseline methods, namely the HS, DHS, k-means and the MDHS. The tests also show that CMDHS is better than the DEMC proposed earlier. Finally the proposed CMDHS was compared with two current state-of-the-art methods, namely a Krill Herd (KH) based centroid allocation method and an Artifice Bee Colony (ABC) based method, and found to outperform these two methods in most cases
    corecore