77,065 research outputs found

    A Complete Axiomatization of Quantified Differential Dynamic Logic for Distributed Hybrid Systems

    Full text link
    We address a fundamental mismatch between the combinations of dynamics that occur in cyber-physical systems and the limited kinds of dynamics supported in analysis. Modern applications combine communication, computation, and control. They may even form dynamic distributed networks, where neither structure nor dimension stay the same while the system follows hybrid dynamics, i.e., mixed discrete and continuous dynamics. We provide the logical foundations for closing this analytic gap. We develop a formal model for distributed hybrid systems. It combines quantified differential equations with quantified assignments and dynamic dimensionality-changes. We introduce a dynamic logic for verifying distributed hybrid systems and present a proof calculus for this logic. This is the first formal verification approach for distributed hybrid systems. We prove that our calculus is a sound and complete axiomatization of the behavior of distributed hybrid systems relative to quantified differential equations. In our calculus we have proven collision freedom in distributed car control even when an unbounded number of new cars may appear dynamically on the road

    Towards Physical Hybrid Systems

    Full text link
    Some hybrid systems models are unsafe for mathematically correct but physically unrealistic reasons. For example, mathematical models can classify a system as being unsafe on a set that is too small to have physical importance. In particular, differences in measure zero sets in models of cyber-physical systems (CPS) have significant mathematical impact on the mathematical safety of these models even though differences on measure zero sets have no tangible physical effect in a real system. We develop the concept of "physical hybrid systems" (PHS) to help reunite mathematical models with physical reality. We modify a hybrid systems logic (differential temporal dynamic logic) by adding a first-class operator to elide distinctions on measure zero sets of time within CPS models. This approach facilitates modeling since it admits the verification of a wider class of models, including some physically realistic models that would otherwise be classified as mathematically unsafe. We also develop a proof calculus to help with the verification of PHS.Comment: CADE 201

    Constructive Hybrid Games

    Full text link
    Hybrid games are models which combine discrete, continuous, and adversarial dynamics. Game logic enables proving (classical) existence of winning strategies. We introduce constructive differential game logic (CdGL) for hybrid games, where proofs that a player can win the game correspond to computable winning strategies. This is the logical foundation for synthesis of correct control and monitoring code for safety-critical cyber-physical systems. Our contributions include novel static and dynamic semantics as well as soundness and consistency.Comment: 60 pages, preprint, under revie

    dTL2: Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems

    Full text link

    Differential Hoare Logics and Refinement Calculi for Hybrid Systems with Isabelle/HOL

    Get PDF
    We present simple new Hoare logics and refinement calculi for hybrid systems in the style of differential dynamic logic. (Refinement) Kleene algebra with tests is used for reasoning about the program structure and generating verification conditions at this level. Lenses capture hybrid program stores in a generic algebraic way. The approach has been formalised with the Isabelle/HOL proof assistant. A number of examples explains the workflow with the resulting verification components
    corecore