1,450 research outputs found

    Differential Geometry of Group Lattices

    Full text link
    In a series of publications we developed "differential geometry" on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of "bicovariant" Cayley graphs with the property that ad(S)S is contained in S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first order calculi extend to higher orders and then allow to introduce further differential geometric structures. Furthermore, we explore the properties of "discrete" vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analogue of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained.Comment: 51 pages, 11 figure

    The word and geodesic problems in free solvable groups

    No full text

    CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters

    Full text link
    The rise of graph-structured data such as social networks, regulatory networks, citation graphs, and functional brain networks, in combination with resounding success of deep learning in various applications, has brought the interest in generalizing deep learning models to non-Euclidean domains. In this paper, we introduce a new spectral domain convolutional architecture for deep learning on graphs. The core ingredient of our model is a new class of parametric rational complex functions (Cayley polynomials) allowing to efficiently compute spectral filters on graphs that specialize on frequency bands of interest. Our model generates rich spectral filters that are localized in space, scales linearly with the size of the input data for sparsely-connected graphs, and can handle different constructions of Laplacian operators. Extensive experimental results show the superior performance of our approach, in comparison to other spectral domain convolutional architectures, on spectral image classification, community detection, vertex classification and matrix completion tasks

    Differential Calculi on Quantum Spaces determined by Automorphisms

    Full text link
    If the bimodule of 1-forms of a differential calculus over an associative algebra is the direct sum of 1-dimensional bimodules, a relation with automorphisms of the algebra shows up. This happens for some familiar quantum space calculi.Comment: 7 pages, Proceedings of XIIIth International Colloquium Integrable Systems and Quantum Group

    Polynomial Growth Harmonic Functions on Finitely Generated Abelian Groups

    Full text link
    In the present paper, we develop geometric analytic techniques on Cayley graphs of finitely generated abelian groups to study the polynomial growth harmonic functions. We develop a geometric analytic proof of the classical Heilbronn theorem and the recent Nayar theorem on polynomial growth harmonic functions on lattices \mathds{Z}^n that does not use a representation formula for harmonic functions. We also calculate the precise dimension of the space of polynomial growth harmonic functions on finitely generated abelian groups. While the Cayley graph not only depends on the abelian group, but also on the choice of a generating set, we find that this dimension depends only on the group itself.Comment: 15 pages, to appear in Ann. Global Anal. Geo

    Dirac operators and spectral triples for some fractal sets built on curves

    Get PDF
    We construct spectral triples and, in particular, Dirac operators, for the algebra of continuous functions on certain compact metric spaces. The triples are countable sums of triples where each summand is based on a curve in the space. Several fractals, like a finitely summable infinite tree and the Sierpinski gasket, fit naturally within our framework. In these cases, we show that our spectral triples do describe the geodesic distance and the Minkowski dimension as well as, more generally, the complex fractal dimensions of the space. Furthermore, in the case of the Sierpinski gasket, the associated Dixmier-type trace coincides with the normalized Hausdorff measure of dimension log3/log2\log 3/ \log 2.Comment: 48 pages, 4 figures. Elementary proofs omitted. To appear in Adv. Mat
    corecore