35 research outputs found

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    Design and realization of a frequency reconfigurable multimode antenna for ism, 5g-ub-6-ghz, and s-band applications

    Get PDF
    This paper presents the design and realization of a compact size multimode frequency reconfigurable antenna. The antenna consists of a triangular-shaped monopole radiator, originally inspired from a rectangular monopole antenna. Slots were utilized to notch the desired frequency while the PIN diodes were utilized to achieve frequency reconfigurability. The antenna can operate in wideband, dual-band, or tri-band mode depending upon the state of the diodes. To validate the simulation results, a prototype was fabricated, and various performance parameters were measured and compared with simulated results. The strong agreement between simulated and measured results along with superior performance as compared to existing works in the literature makes the proposed antenna a strong candidate for ISM, 5G-sub-6 GHz, and S-band applications

    Recent Advances in Antenna Design for 5G Heterogeneous Networks

    Get PDF
    The aim of this book is to highlight up to date exploited technologies and approaches in terms of antenna designs and requirements. In this regard, this book targets a broad range of subjects, including the microstrip antenna and the dipole and printed monopole antenna. The varieties of antenna designs, along with several different approaches to improve their overall performance, have given this book a great value, in which makes this book is deemed as a good reference for practicing engineers and under/postgraduate students working in this field. The key technology trends in antenna design as part of the mobile communication evolution have mainly focused on multiband, wideband, and MIMO antennas, and all have been clearly presented, studied and implemented within this book. The forthcoming 5G systems consider a truly mobile multimedia platform that constitutes a converged networking arena that not only includes legacy heterogeneous mobile networks but advanced radio interfaces and the possibility to operate at mm wave frequencies to capitalize on the large swathes of available bandwidth. This provides the impetus for a new breed of antenna design that, in principle, should be multimode in nature, energy efficient, and, above all, able to operate at the mm wave band, placing new design drivers on the antenna design. Thus, this book proposes to investigate advanced 5G antennas for heterogeneous applications that can operate in the range of 5G spectrums and to meet the essential requirements of 5G systems such as low latency, large bandwidth, and high gains and efficiencies

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Reconfigurable Antennas

    Get PDF
    In this new book, we present a collection of the advanced developments in reconfigurable antennas and metasurfaces. It begins with a review of reconfigurability technologies, and proceeds to the presentation of a series of reconfigurable antennas, UWB MIMO antennas and reconfigurable arrays. Then, reconfigurable metasurfaces are introduced and the latest advances are presented and discussed

    Passive Planar Microwave Devices

    Get PDF
    The aim of this book is to highlight some recent advances in microwave planar devices. The development of planar technologies still generates great interest because of their many applications in fields as diverse as wireless communications, medical instrumentation, remote sensing, etc. In this book, particular interest has been focused on an electronically controllable phase shifter, wireless sensing, a multiband textile antenna, a MIMO antenna in microstrip technology, a miniaturized spoof plasmonic antipodal Vivaldi antenna, a dual-band balanced bandpass filter, glide-symmetric structures, a transparent multiband antenna for vehicle communications, a multilayer bandpass filter with high selectivity, microwave planar cutoff probes, and a wideband transition from microstrip to ridge empty substrate integrated waveguide

    Active Backscattering Positioning System Using Innovative Harmonic Oscillator Tags for Future Internet of Things: Theory and Experiments

    Get PDF
    RÉSUMÉ D'ici 2020, l'Internet des objets (IoT) permettra probablement de créer 25 milliards d'objets connectés, 44 ZB de données et de débloquer 11 000 milliards de dollars d’opportunités commerciales. Par conséquent, ce sujet a suscité d’énormes intérêts de recherche dans le monde académique entier. L'une des technologies clés pour l'IoT concerne le positionnement physique intérieur précis. Le principal objectif dans ce domaine est le développement d'un système de positionnement intérieur avec une grande précision, une haute résolution, un fonctionnement à plusieurs cibles, un faible coût, un faible encombrement et une faible consommation d'énergie. Le système de positionnement intérieur conventionnel basé sur les technologies de Wi-Fi ou d'identification par radiofréquence (RFID) ne peut répondre à ces exigences. Principalement parce que leur appareil et leur signal ne sont pas conçus spécialement pour atteindre les objectifs visés. Les chercheurs ont découvert qu'en mettant en oeuvre de différents types de modulation sur les étiquettes, le radar à onde continue (CW) et ses dérivés deviennent des solutions prometteuses. Les activités de recherche présentées dans cette thèse sont menées dans le but de développer des systèmes de positionnement en intérieur bidimensionnel (2-D) à plusieurs cibles basées sur des étiquettes actives à rétrodiffusion harmonique avec une technique à onde continue modulée en fréquence (FMCW). Les contributions de cette thèse peuvent être résumées comme suit: Tout d'abord, la conception d'un circuit actif harmonique, plus spécifiquement une classe d'oscillateurs harmoniques innovants utilisée comme composant central des étiquettes actives dans notre système, implique une méthodologie de conception de signal de grande taille et des installations de caractérisation. L’analyseur de réseau à grand signal (LSNA) est un instrument émergent basé sur les fondements théoriques du cadre de distorsion polyharmonique (PHD). Bien qu'ils soient disponibles dans le commerce depuis 2008, des organismes de normalisation et de recherche tels que l’Institut national des normes et de la technologie (NIST) des États-Unis travaillent toujours à la mise au point d'un standard largement reconnu permettant d'évaluer et de comparer leurs performances. Dans ce travail, un artefact de génération multi-harmonique pour la vérification LSNA est développé. C'est un dispositif actif capable de générer les 5 premières harmoniques d'un signal d'entrée avec une réponse ultra-stables en amplitude et en phase, quelle que soit la variation de l'impédance de la charge.----------ABSTRACT By 2020, the internet of things (IoT) will probably enable 25 billion connected objects, create 44 ZB data and unlock 11 trillion US dollar business opportunities. Therefore, this topic has been attracting tremendous research interests in the entire academic world. One of the key enabling technologies for IoT is concerned with accurate indoor physical positioning. The development of such an indoor positioning system with high accuracy, high resolution, multitarget operation, low cost, small footprint, and low power consumption is the major objective in this area. The conventional indoor positioning system based on WiFi or radiofrequency identification (RFID) technology cannot fulfill these requirements mainly because their device and signal are not purposely designed for achieving the targeted goals. Researchers have found that by implementing different types of modulation on the tags, continuous-wave (CW) radar and its derivatives become promising solutions. The research activities presented in this Ph.D. thesis are carried out towards the goal of developing multitarget two-dimensional (2-D) indoor positioning systems based on harmonic backscattering active tags together with a frequency-modulated continuous-wave (FMCW) technique. Research contributions of this thesis can be summarized as follows: First of all, the design of a harmonic active circuit, more specifically, a class of innovative harmonic oscillators used as the core component of active tags in our system, involves a large signal design methodology and characterization facilities. The large signal network analyzer (LSNA) is an emerging instrument based on the theoretical foundation for the Poly-Harmonic Distortion (PHD) framework. Although they have been commercially available since 2008, standard and research organizations such as the National Institute of Standards and Technology (NIST) of the US are still working towards a widely-recognized standard to evaluate and cross-reference their performances. In this work, a multi-harmonic generation artifact for LSNA verification is developed. It is an active device that can generate the first 5 harmonics of an input signal with ultra-stable amplitude and phase response regardless of the load impedance variation

    The Study of Reconfigurable Antennas and Associated Circuitry

    Get PDF
    This research focuses on the design of pattern reconfigurable antennas and the associated circuitry. The proposed pattern reconfigurable antenna designs benefit from advantages such as maximum pattern diversity and optimum switching circuits to realise 5G reconfigurable antennas. Whereas MIMO based solutions can provide increased channel capacity, they demand high computational capability and power consumption due to multiple channel processing. This prevents their use in many applications most notably in the Internet of Things where power consumption is of key importance. A switched-beam diversity allows an energy-efficient solution improving the link budget even for small low-cost battery operated IoT/sensor network applications. The main focus of the antenna reconfiguration in this work is for switched-beam diversity. The fundamental switching elements are discussed including basic PIN diode circuits. Techniques to switch the antenna element in the feed or shorting the antenna element to the ground plane are presented. A back-to-back microstrip patch antenna with two hemispherical switchable patterns is proposed. The patch elements on a common ground plane, are switched with a single-pole double-throw PIN diode circuit. Switching the feed selects either of two identical oppositely oriented radiation patterns for maximum diversity in one plane. The identical design of the antenna elements provides similar performance control of frequency and radiation pattern in different states. This antenna provides a simple solution to cross-layer PIN diode circuit designs. A mirrored structure study provides an understanding of performance control for different switching states. A printed inverted-F antenna is presented for monopole reconfigurable antenna design. The proposed low-profile antenna consists of one main radiator and one parasitic element. By shorting the parasitic element to the ground plane using only one PIN diode, the antenna is capable of switching both the pattern and polarisation across the full bandwidth. The switched orthogonal pattern provides the maximum spatial pattern diversity and is realised using a simple structure. Then, a dual-stub coplanar Vivaldi antenna with a parasitic element is presented for the 5G mm-Wave band. The use of a dual-stub coupled between the parasitic element and two tapered slots is researched. The parasitic element shape and size is optimised to increase the realised gain. A bandpass coupled line filter is used for frequency selective features. The use of slits on the outer edge of the ground plane provides a greater maximum gain. This integrated filtenna offers lower insertion loss than the commercial DC blocks. The UWB antenna with an integrated filter can be used for harmonic suppression. The influence of the integrated filter circuit close to the antenna geometry informs the design of PIN diode circuit switching and power supply in the 5G band. Based on the filter design in the mm-Wave band, a method of designing a feasible DC power supply for the PIN diode in the mm-Wave band is studied. A printed Yagi-Uda antenna array is integrated with switching circuitry to realise a switched 180° hemispheres radiation pattern. The antenna realises a maximum diversity in one plane. The study offers the possibility to use PIN diodes in the mm-Wave band for reconfigurable antenna designs. For the presented antennas, key geometric parameters are discussed for improved understanding of the trade-offs in radiation pattern/beamwidth and gain control for reconfigurable antenna applications

    Application of systems engineering to complex systems and system of systems

    Get PDF
    2017 Spring.Includes bibliographical references.This dissertation is an investigation of system of systems (SoS). It begins with an analysis to define, with some rigor, the similarities and differences between complex systems and SoS. With this foundation, the baseline concept is development for several different types of systems and they are used as a practical approach to compare and contrast complex systems versus SoS. The method is to use a progression from simple to more complex systems. Specifically, a pico hydro electric power generation system, a hybrid renewable electric power generation system, a LEO satellites system, and Molniya orbit satellite system are investigated. In each of these examples, systems engineering methods are applied for the development of a baseline solution. While these examples are complex, they do not rise to the level of a SoS. In contrast, a multi-spectral drone detection system for protection of airports is investigated and a baseline concept for it is generated. The baseline is shown to meet the minimum requirements to be considered a SoS. The system combines multiple sensor types to distinguish drones as targets. The characteristics of the drone detection system which make it a SoS are discussed. Since emergence is considered by some to be a characteristic of a SoS, it is investigated. A solution to the problem of determining if system properties are emergent is presented and necessary and sufficient conditions for emergence are developed. Finally, this work concludes with a summary and suggestions for additional work
    corecore