71,740 research outputs found

    Classification of Overlapped Audio Events Based on AT, PLSA, and the Combination of Them

    Get PDF
    Audio event classification, as an important part of Computational Auditory Scene Analysis, has attracted much attention. Currently, the classification technology is mature enough to classify isolated audio events accurately, but for overlapped audio events, it performs much worse. While in real life, most audio documents would have certain percentage of overlaps, and so the overlap classification problem is an important part of audio classification. Nowadays, the work on overlapped audio event classification is still scarce, and most existing overlap classification systems can only recognize one audio event for an overlap. In this paper, in order to deal with overlaps, we innovatively introduce the author-topic (AT) model which was first proposed for text analysis into audio classification, and innovatively combine it with PLSA (Probabilistic Latent Semantic Analysis). We propose 4 systems, i.e. AT, PLSA, AT-PLSA and PLSA-AT, to classify overlaps. The 4 proposed systems have the ability to recognize two or more audio events for an overlap. The experimental results show that the 4 systems perform well in classifying overlapped audio events, whether it is the overlap in training set or the overlap out of training set. Also they perform well in classifying isolated audio events

    Learning Audio Sequence Representations for Acoustic Event Classification

    Full text link
    Acoustic Event Classification (AEC) has become a significant task for machines to perceive the surrounding auditory scene. However, extracting effective representations that capture the underlying characteristics of the acoustic events is still challenging. Previous methods mainly focused on designing the audio features in a 'hand-crafted' manner. Interestingly, data-learnt features have been recently reported to show better performance. Up to now, these were only considered on the frame-level. In this paper, we propose an unsupervised learning framework to learn a vector representation of an audio sequence for AEC. This framework consists of a Recurrent Neural Network (RNN) encoder and a RNN decoder, which respectively transforms the variable-length audio sequence into a fixed-length vector and reconstructs the input sequence on the generated vector. After training the encoder-decoder, we feed the audio sequences to the encoder and then take the learnt vectors as the audio sequence representations. Compared with previous methods, the proposed method can not only deal with the problem of arbitrary-lengths of audio streams, but also learn the salient information of the sequence. Extensive evaluation on a large-size acoustic event database is performed, and the empirical results demonstrate that the learnt audio sequence representation yields a significant performance improvement by a large margin compared with other state-of-the-art hand-crafted sequence features for AEC

    Feature Learning from Spectrograms for Assessment of Personality Traits

    Full text link
    Several methods have recently been proposed to analyze speech and automatically infer the personality of the speaker. These methods often rely on prosodic and other hand crafted speech processing features extracted with off-the-shelf toolboxes. To achieve high accuracy, numerous features are typically extracted using complex and highly parameterized algorithms. In this paper, a new method based on feature learning and spectrogram analysis is proposed to simplify the feature extraction process while maintaining a high level of accuracy. The proposed method learns a dictionary of discriminant features from patches extracted in the spectrogram representations of training speech segments. Each speech segment is then encoded using the dictionary, and the resulting feature set is used to perform classification of personality traits. Experiments indicate that the proposed method achieves state-of-the-art results with a significant reduction in complexity when compared to the most recent reference methods. The number of features, and difficulties linked to the feature extraction process are greatly reduced as only one type of descriptors is used, for which the 6 parameters can be tuned automatically. In contrast, the simplest reference method uses 4 types of descriptors to which 6 functionals are applied, resulting in over 20 parameters to be tuned.Comment: 12 pages, 3 figure
    • …
    corecore