58 research outputs found

    Dictionary Learning and Tensor Decomposition via the Sum-of-Squares Method

    Full text link
    We give a new approach to the dictionary learning (also known as "sparse coding") problem of recovering an unknown n×mn\times m matrix AA (for mnm \geq n) from examples of the form y=Ax+e, y = Ax + e, where xx is a random vector in Rm\mathbb R^m with at most τm\tau m nonzero coordinates, and ee is a random noise vector in Rn\mathbb R^n with bounded magnitude. For the case m=O(n)m=O(n), our algorithm recovers every column of AA within arbitrarily good constant accuracy in time mO(logm/log(τ1))m^{O(\log m/\log(\tau^{-1}))}, in particular achieving polynomial time if τ=mδ\tau = m^{-\delta} for any δ>0\delta>0, and time mO(logm)m^{O(\log m)} if τ\tau is (a sufficiently small) constant. Prior algorithms with comparable assumptions on the distribution required the vector xx to be much sparser---at most n\sqrt{n} nonzero coordinates---and there were intrinsic barriers preventing these algorithms from applying for denser xx. We achieve this by designing an algorithm for noisy tensor decomposition that can recover, under quite general conditions, an approximate rank-one decomposition of a tensor TT, given access to a tensor TT' that is τ\tau-close to TT in the spectral norm (when considered as a matrix). To our knowledge, this is the first algorithm for tensor decomposition that works in the constant spectral-norm noise regime, where there is no guarantee that the local optima of TT and TT' have similar structures. Our algorithm is based on a novel approach to using and analyzing the Sum of Squares semidefinite programming hierarchy (Parrilo 2000, Lasserre 2001), and it can be viewed as an indication of the utility of this very general and powerful tool for unsupervised learning problems

    Provable Sparse Tensor Decomposition

    Full text link
    We propose a novel sparse tensor decomposition method, namely Tensor Truncated Power (TTP) method, that incorporates variable selection into the estimation of decomposition components. The sparsity is achieved via an efficient truncation step embedded in the tensor power iteration. Our method applies to a broad family of high dimensional latent variable models, including high dimensional Gaussian mixture and mixtures of sparse regressions. A thorough theoretical investigation is further conducted. In particular, we show that the final decomposition estimator is guaranteed to achieve a local statistical rate, and further strengthen it to the global statistical rate by introducing a proper initialization procedure. In high dimensional regimes, the obtained statistical rate significantly improves those shown in the existing non-sparse decomposition methods. The empirical advantages of TTP are confirmed in extensive simulated results and two real applications of click-through rate prediction and high-dimensional gene clustering.Comment: To Appear in JRSS-

    Improving Efficiency and Scalability of Sum of Squares Optimization: Recent Advances and Limitations

    Full text link
    It is well-known that any sum of squares (SOS) program can be cast as a semidefinite program (SDP) of a particular structure and that therein lies the computational bottleneck for SOS programs, as the SDPs generated by this procedure are large and costly to solve when the polynomials involved in the SOS programs have a large number of variables and degree. In this paper, we review SOS optimization techniques and present two new methods for improving their computational efficiency. The first method leverages the sparsity of the underlying SDP to obtain computational speed-ups. Further improvements can be obtained if the coefficients of the polynomials that describe the problem have a particular sparsity pattern, called chordal sparsity. The second method bypasses semidefinite programming altogether and relies instead on solving a sequence of more tractable convex programs, namely linear and second order cone programs. This opens up the question as to how well one can approximate the cone of SOS polynomials by second order representable cones. In the last part of the paper, we present some recent negative results related to this question.Comment: Tutorial for CDC 201

    Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms

    Get PDF
    Tensor rank and low-rank tensor decompositions have many applications in learning and complexity theory. Most known algorithms use unfoldings of tensors and can only handle rank up to np/2n^{\lfloor p/2 \rfloor} for a pp-th order tensor in Rnp\mathbb{R}^{n^p}. Previously no efficient algorithm can decompose 3rd order tensors when the rank is super-linear in the dimension. Using ideas from sum-of-squares hierarchy, we give the first quasi-polynomial time algorithm that can decompose a random 3rd order tensor decomposition when the rank is as large as n3/2/polylognn^{3/2}/\textrm{polylog} n. We also give a polynomial time algorithm for certifying the injective norm of random low rank tensors. Our tensor decomposition algorithm exploits the relationship between injective norm and the tensor components. The proof relies on interesting tools for decoupling random variables to prove better matrix concentration bounds, which can be useful in other settings

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure
    corecore