9 research outputs found

    LSTM based Similarity Measurement with Spectral Clustering for Speaker Diarization

    Full text link
    More and more neural network approaches have achieved considerable improvement upon submodules of speaker diarization system, including speaker change detection and segment-wise speaker embedding extraction. Still, in the clustering stage, traditional algorithms like probabilistic linear discriminant analysis (PLDA) are widely used for scoring the similarity between two speech segments. In this paper, we propose a supervised method to measure the similarity matrix between all segments of an audio recording with sequential bidirectional long short-term memory networks (Bi-LSTM). Spectral clustering is applied on top of the similarity matrix to further improve the performance. Experimental results show that our system significantly outperforms the state-of-the-art methods and achieves a diarization error rate of 6.63% on the NIST SRE 2000 CALLHOME database.Comment: Accepted for INTERSPEECH 201

    Target-Speaker Voice Activity Detection: a Novel Approach for Multi-Speaker Diarization in a Dinner Party Scenario

    Full text link
    Speaker diarization for real-life scenarios is an extremely challenging problem. Widely used clustering-based diarization approaches perform rather poorly in such conditions, mainly due to the limited ability to handle overlapping speech. We propose a novel Target-Speaker Voice Activity Detection (TS-VAD) approach, which directly predicts an activity of each speaker on each time frame. TS-VAD model takes conventional speech features (e.g., MFCC) along with i-vectors for each speaker as inputs. A set of binary classification output layers produces activities of each speaker. I-vectors can be estimated iteratively, starting with a strong clustering-based diarization. We also extend the TS-VAD approach to the multi-microphone case using a simple attention mechanism on top of hidden representations extracted from the single-channel TS-VAD model. Moreover, post-processing strategies for the predicted speaker activity probabilities are investigated. Experiments on the CHiME-6 unsegmented data show that TS-VAD achieves state-of-the-art results outperforming the baseline x-vector-based system by more than 30% Diarization Error Rate (DER) abs.Comment: Accepted to Interspeech 202

    X-VECTORS: ROBUST NEURAL EMBEDDINGS FOR SPEAKER RECOGNITION

    Get PDF
    Speaker recognition is the task of identifying speakers based on their speech signal. Typically, this involves comparing speech from a known speaker, with recordings from unknown speakers, and making same-or-different speaker decisions. If the lexical contents of the recordings are fixed to some phrase, the task is considered text-dependent, otherwise it is text-independent. This dissertation is primarily concerned with this second, less constrained problem. Since speech data lives in a complex, high-dimensional space, it is difficult to directly compare speakers. Comparisons are facilitated by embeddings: mappings from complex input patterns to low-dimensional Euclidean spaces where notions of distance or similarity are defined in natural ways. For almost ten years, systems based on i-vectors--a type of embedding extracted from a traditional generative model--have been the dominant paradigm in this field. However, in other areas of applied machine learning, such as text or vision, embeddings extracted from discriminatively trained neural networks are the state-of-the-art. Recently, this line of research has become very active in speaker recognition as well. Neural networks are a natural choice for this purpose, as they are capable of learning extremely complex mappings, and when training data resources are abundant, tend to outperform traditional methods. In this dissertation, we develop a next-generation neural embedding--denoted by x-vector--for speaker recognition. These neural embeddings are demonstrated to substantially improve upon the state-of-the-art on a number of benchmark datasets

    ‘Did the speaker change?’: Temporal tracking for overlapping speaker segmentation in multi-speaker scenarios

    Get PDF
    Diarization systems are an essential part of many speech processing applications, such as speaker indexing, improving automatic speech recognition (ASR) performance and making single speaker-based algorithms available for use in multi-speaker domains. This thesis will focus on the first task of the diarization process, that being the task of speaker segmentation which can be thought of as trying to answer the question ‘Did the speaker change?’ in an audio recording. This thesis starts by showing that time-varying pitch properties can be used advantageously within the segmentation step of a multi-talker diarization system. It is then highlighted that an individual’s pitch is smoothly varying and, therefore, can be predicted by means of a Kalman filter. Subsequently, it is shown that if the pitch is not predictable, then this is most likely due to a change in the speaker. Finally, a novel system is proposed that uses this approach of pitch prediction for speaker change detection. This thesis then goes on to demonstrate how voiced harmonics can be useful in detecting when more than one speaker is talking, such as during overlapping speaker activity. A novel system is proposed to track multiple harmonics simultaneously, allowing for the determination of onsets and end-points of a speaker’s utterance in the presence of an additional active speaker. This thesis then extends this work to explore the use of a new multimodal approach for overlapping speaker segmentation that tracks both the fundamental frequency (F0) and direction of arrival (DoA) of each speaker simultaneously. The proposed multiple hypothesis tracking system, which simultaneously tracks both features, shows an improvement in segmentation performance when compared to tracking these features separately. Lastly, this thesis focuses on the DoA estimation part of the newly proposed multimodal approach. It does this by exploring a polynomial extension to the multiple signal classification (MUSIC) algorithm, spatio-spectral polynomial (SSP)-MUSIC, and evaluating its performance when using speech sound sources.Open Acces
    corecore