3 research outputs found

    Development of a non-inertia mass fibre bragg grating accelerometer based on a single diaphragm mechanism and its vibration response analysis

    Get PDF
    The development of the fibre Bragg grating (FBG) sensor as an accelerometer has received considerable attention since the FBG sensor is remarkably sensitive to strain. The inclusion of inertia mass in the diaphragm-type FBG accelerometer increased the complexity of the accelerometer mechanism. Moreover, numerical and experimental studies are not comprehensively reported and published, despite the fact that several accelerometer aspects should be thoroughly investigated. The overall aim of this thesis is to present a new design of a small and fabricable, diaphragm-type non-inertia mass FBG accelerometer (FBGA-SD) that comes with new features, as well as its comprehensive numerical and experimental investigation. This research begins with the development of five FBGA-SD designs and their concept scoring. The dynamic of the final FBGA-SD design is then investigated using finite element modal analysis followed by harmonic response analysis to determine the location of maximum strain on the diaphragm to place the FBG sensor. The functionality of the FBGA-SD is finally investigated through transient response analysis and experimental work as well as sensitivity determination. The final design of FBGA-SD with dimensions of 16 mm × 16 mm × 10 mm and a weight of 4 grammes has eliminated the weaknesses of the previous four FBGA-SD designs, with new features introduced particularly in the lengthening of the FBG tunnel and the invention of a through-hole for monitoring the FBG sensor inside the diaphragm pocket. Finite element modal analysis has ensured that the first natural frequency of the diaphragm is low (13, 380 Hz) and far from that of the housing (20, 689 Hz) in order to avoid the dynamic of the housing affecting accelerometer response. The location of the maximum strain for placing the FBG sensor on the diaphragm is determined, with the two best positions found to be in the middle and along the edges of the diaphragm. Due to the fact that the edge of the diaphragm is a clamped area, positioning the FBG sensor in its middle would be ideal. The response of the wavelength shift obtained from transient response analysis and experiment agrees well in terms of pattern and phase but differs by 50% of amplitude. It should also be mentioned that the base acceleration and the wavelength shift both demonstrate that they are in the same phase with one another. The 50% difference in amplitude of the wavelength shift reflects the sensitivity of the FBGA-SD, where the experimental sensitivity is 9.64×10-5 nm/g and the transient response analysis gives 4.79×10-5 nm/g, valid for the range of excitation frequencies of 10 to 147 Hz and maximum base acceleration of 10.5 m/s2. Within these ranges, the sensitivity is not frequency dependent

    Diaphragm Based Fiber Bragg Grating Acceleration Sensor with Temperature Compensation

    No full text
    A novel fiber Bragg grating (FBG) sensing-based acceleration sensor has been proposed to simultaneously decouple and measure temperature and acceleration in real-time. This design applied a diaphragm structure and utilized the axial property of a tightly suspended optical fiber, enabling improvement in its sensitivity and resonant frequency and achieve a low cross-sensitivity. The theoretical vibrational model of the sensor has been built, and its design parameters and sensing properties have been analyzed through the numerical analysis. A decoupling method has been presented with consideration of the thermal expansion of the sensor structure to realize temperature compensation. Experimental results show that the temperature sensitivity is 8.66 pm/°C within the range of 30–90 °C. The acceleration sensitivity is 20.189 pm/g with a linearity of 0.764% within the range of 5~65 m/s2. The corresponding working bandwidth is 10~200 Hz and its resonant frequency is 600 Hz. This sensor possesses an excellent impact resistance for the cross direction, and the cross-axis sensitivity is below 3.31%. This implementation can avoid the FBG-pasting procedure and overcome its associated shortcomings. The performance of the proposed acceleration sensor can be easily adjusted by modifying their corresponding physical parameters to satisfy requirements from different vibration measurements
    corecore