7 research outputs found

    Oscillatory fluid flow elicits changes in morphology, cytoskeleton and integrin-associated molecules in MLO-Y4 cells, but not in MC3T3-E1 cells

    Full text link
    Interstitial fluid flow stress is one of the most important mechanical stimulations of bone cells under physiological conditions. Osteocytes and osteoblasts act as primary mechanosensors within bones, and in vitro are able to respond to fluid shear stress, both morphologically and functionally. However, there is little information about the response of integrin-associated molecules using both osteoblasts and osteocytes. In this study, we investigated the changes in response to 2 hours of oscillatory fluid flow stress in the MLO-Y4 osteocyte-like cell line and the MC3T3-E1 osteoblast-like cell line. MLO-Y4 cells exhibited a significant increase in the expression of integrin-associated molecules, including OPN, CD44, vinculin and integrin avp3. However, there was no or limited increase observed in MC3T3-E1 osteoblast-like cells. Cell area and fiber stress formation were also markedly promoted by fluid flow only in MLO-Y4 cells. But the numbers of processes per cell remain unaffected in both cell lines

    Case Report: Formation of 3D Osteoblast Spheroid Under Magnetic Levitation for Bone Tissue Engineering

    Get PDF
    Skeletal reconstruction is necessary in cases of bone defects created by tumors, trauma, and abnormalities. Regeneration of bone defects remains a critical problem, and current approaches are based on biocompatible scaffolds. Spheroids represent a simple 3D system since no supporting material is required for cell growth. Different techniques are used to generate spheroids, such as hanging drop, low-attachment plates, and magnetic nanoparticles. The idea of using magnetic nanoparticles is to cross-link through cell membrane overnight to create complex 3D cellular spheroid by using magnets to guide the cellular response. Herein, the current study aimed to achieve 3D human fetal osteoblast (hFOB) spheroid under magnetic levitation. Formation of 3D spheroid culture under magnetic levitation was evaluated by cell viability at 3, 7, and 14 days. Morphology of the 3D hFOB spheroid was analyzed by SEM and fluorescence microscopy and the differentiation towards mineralized lineage by ALP assay, qPCR, and alizarin red staining. The cell viability indicated that the 3D hFOB spheroid still viable after 14 days of culture. ALP assay, qPCR analysis expression of Col1, ALP, and Itg-β1 molecules, and calcium deposition with alizarin red showed a high level of bioactivity of the 3D hFOB spheroid. SEM images allowed the morphological analysis of the 3D microtissue-like spheroid with the presence of matrix deposition. These results indicate that magnetic levitation culture enables 3D stable osteoblast spheroids and could be a promising strategy for engineering application in the 3D construct in surgery regeneration of mineralized tissue

    An Image Processing Approach to Determine the Morphological Changes in Cell Nucleus

    Get PDF
    Confocal imaging has been a powerful tool for scientists over the decades for visualization of cellular architecture and behavior. However, the quantitative inference drawn from the confocal images typically relies upon image processing. So far many image processing tools are available that can quantify various image parameters and image characteristics i.e., intensity, area, shape, volume, perimeter, etc.. However the success of the existing techniques depends on high picture clarity and efficient noise removal. Now in this regard, lots of scoperemains over the increase of the quality of the native image. Moreover, the existing procedure of image processing fails to quantify morphology distortion properly. Though pattern recognition algorithms can often be used to measure the changes, but is seldom able to provide reliable data when the input elements are taken from a pool of varying diversity. Keeping this perspective in mind, we have developed a MATLAB image analysis program for processing of universal confocal images and quantification of cell shape factors. The confocal images were properly processed for efficient noise removal and then subjected to skeletonization algorithm for quantification of cell nucleus shape change. The program was tested to quantify the nuclear mechanotransduction. The nucleus is a key component of the cell and its shape changes with a change in environment. Scientists have now discovered that such variation leads to altered cellular and nuclear function

    Um novo modelo de conceito para implantes ortopédicos instrumentados ativos

    Get PDF
    Doutoramento em Engenharia MecânicaTotal hip replacement (THR) is one of the most performed surgical procedures around the world. Millions of THR are carried out worldwide each year. Currently, THR revision rates can be higher than 10%. A significant increase of the number of primary and revision THRs, mainly among patients less than 65 years old (including those under 45 years old) has been predicted for the forthcoming years. A worldwide increase in the use of uncemented fixation has also been reported, incidence caused mainly by the significant increase of more active and/or younger patients. Besides the significant breakthroughs for uncemented fixations, they have not been able to ensure long-term implant survival. Up to date, current implant models have shown evidences of their inability to avoid revision procedures. The performance of implants will be optimized if they are designed to perform an effective control over the osseointegration process. To pursue this goal, improved surgical techniques and rehabilitation protocols, innovative bioactive coatings (including those for controlled delivery of drugs and/or other bio-agents in the bone-implant interface), the concepts of Passive Instrumented Implant and Active Instrumented Implant have been proposed. However, there are no conclusive demonstrations of the effectiveness of such methodologies. The main goal of this thesis is to propose a new concept model for instrumented implants to optimize the bone-implant integration: the self-powered instrumented active implant with ability to deliver controlled and personalized biophysical stimuli to target tissue areas. The need of such a new model is demonstrated by optimality analyses conducted to study the performance of instrumented and non-instrumented orthopaedic implants. Promising results on the potential of a therapeutic actuation driven by cosurface-based capacitive stimulation were achieved, as well as for self-powering instrumented active implants by magnetic levitation-based electromagnetic energy harvesting.A artroplastia total da anca (THR) é um dos procedimentos cirúrgicos mais realizados à escala global. Milhões de THRs são realizadas todos os anos em todo o mundo. Atualmente, as taxas de revisão destas artroplastias podem ser superiores a 10%. O número de THRs primárias e de revisão têm aumentado e estima-se que cresçam acentuadamente nos próximos anos, principalmente em pacientes com idades inferiores a 65 anos (incluindo aqueles com menos de 45 anos). Também se tem verificado uma tendência generalizada para o uso de fixações não cimentadas, incidência principalmente causada pelo aumento significativo de pacientes mais jovens e/ou activos. Embora se tenham realizado avanços científicos no projeto de implantes não cimentados, têm-se verificado o seu insucesso a longo-prazo. Encontram-se evidências da ineficácia dos modelos de implantes que têm sido desenvolvidos para evitar procedimentos de revisão. O desempenho dos implantes será otimizado se estes foram projetados para controlarem eficazmente o processo de osseointegração. Para se alcançar este objetivo, têm sido propostas a melhoria das técnicas cirúrgicas e dos protocolos de reabilitação, a inovação dos revestimentos (onde se incluem os revestimentos ativos projetados para a libertação controlada de fármacos e/ou outros bio-agentes) e os conceitos de Implante Instrumentado Passivo e Implante Instrumentado Ativo. Contudo, não existem demonstrações conclusivas da eficácia de tais metodologias. O principal objetivo desta tese é propor um novo modelo de conceito para implantes instrumentados para se otimizar a integração osso-implante: o implante instrumentado ativo, energeticamente auto-suficiente, com capacidade de aplicar estímulos biofísicos em tecidos-alvo de forma controlada e personalizada. A necessidade de um novo modelo é demonstrada através da realização de análises de otimalidade ao desempenho dos implantes instrumentados e não-instrumentados. Foram encontrados resultados promissores para o controlo otimizado da osseointegração usando este novo modelo, através da atuação terapêutica baseada na estimulação capacitiva com arquitetura em co-superfície, assim como para fornecer energia elétrica de forma autónoma por mecanismos de transdução baseados em indução eletromagnética usando configurações baseadas na levitação magnética

    Human reproduction in space. Late results

    Get PDF
    Objectius de Desenvolupament Sostenible::3 - Salut i BenestarPostprint (published version
    corecore