9 research outputs found

    An Integrated Method for Optimizing Bridge Maintenance Plans

    Get PDF
    Bridges are one of the vital civil infrastructure assets, essential for economic developments and public welfare. Their large numbers, deteriorating condition, public demands for safe and efficient transportation networks and limited maintenance and intervention budgets pose a challenge, particularly when coupled with the need to respect environmental constraints. This state of affairs creates a wide gap between critical needs for intervention actions, and tight maintenance and rehabilitation funds. In an effort to meet this challenge, a newly developed integrated method for optimized maintenance and intervention plans for reinforced concrete bridge decks is introduced. The method encompasses development of five models: surface defects evaluation, corrosion severities evaluation, deterioration modeling, integrated condition assessment, and optimized maintenance plans. These models were automated in a set of standalone computer applications, coded using C#.net in Matlab environment. These computer applications were subsequently combined to form an integrated method for optimized maintenance and intervention plans. Four bridges and a dataset of bridge images were used in testing and validating the developed optimization method and its five models. The developed models have unique features and demonstrated noticeable performance and accuracy over methods used in practice and those reported in the literature. For example, the accuracy of the surface defects detection and evaluation model outperforms those of widely-recognized machine leaning and deep learning models; reducing detection, recognition and evaluation of surface defects error by 56.08%, 20.2% and 64.23%, respectively. The corrosion evaluation model comprises design of a standardized amplitude rating system that circumvents limitations of numerical amplitude-based corrosion maps. In the integrated condition, it was inferred that the developed model accomplished consistent improvement over the visual inspection procedures in-use by the Ministry of Transportation in Quebec. Similarly, the deterioration model displayed average enhancement in the prediction accuracies by 60% when compared against the most commonly-utilized weibull distribution. The performance of the developed multi-objective optimization model yielded 49% and 25% improvement over that of genetic algorithm in a five-year study period and a twenty five-year study period, respectively. At the level of thirty five-year study period, unlike the developed model, classical meta-heuristics failed to find feasible solutions within the assigned constraints. The developed integrated platform is expected to provide an efficient tool that enables decision makers to formulate sustainable maintenance plans that optimize budget allocations and ensure efficient utilization of resources

    New innovations in pavement materials and engineering: A review on pavement engineering research 2021

    Get PDF
    Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods, new technologies and new materials related to pavement engineering are emerging. Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering (English Edition) has launched a review paper on the topic of “New innovations in pavement materials and engineering: A review on pavement engineering research 2021”. Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials, multi-scale mechanics, green and sustainable pavement, and intelligent pavement. Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering

    Improvement of hardware reliability with aging monitors

    Get PDF

    Fehlercharakterisierung zuverlässiger Schaltungen im Selbsttest

    Get PDF
    Hochintegrierte Schaltungen können immer kleiner, höher getaktet und energieeffizienter hergestellt werden, allerdings können bedingt durch diese technologischen Trends auch vermehrt Schwachstellen im System entstehen. Diese Schwachstellen führen oft während des Produktionstests nicht zu einem Fehlverhalten der Schaltung, während des Betriebs allerdings droht durch die steigende Anfälligkeit gegenüber intrinsischen und äußeren Störeinflüssen sowie Alterungseffekten ein vorzeitiger Ausfall der Schaltung. Solche Frühausfälle werden „Early-Life Fehler“ genannt und können mit einem Standard- Test ohne weitere Anpassungen nicht erkannt werden. Indikatoren für einen Frühausfall können intermittierende Fehler, aber auch kleine Verzögerungsfehler sein. In dieser Arbeit wird ein Selbsttest vorgestellt, der eine Fehlercharakterisierung zur Erkennung von Systemschwachstellen und Vermeidung von Frühausfällen, speziell solche, die sich als intermittierender Fehler oder kleiner Verzögerungsfehler auswirken, mit geringem Hardware- und Zeitaufwand mittels eines Standard-Tests ermöglicht. Hierzu wird im Selbsttest zunächst zwischen permanenten und nicht-permanenten Fehlern unterschieden und eine Klassifikation der nicht- permanenten Fehler mit Hilfe eines voran geschalteten Diagnoseverfahrens und Bayesschen Berechnungen durchgeführt. Hierdurch lässt sich die Produktqualität ohne zusätzliche Ausbeuteverluste erhöhen. Zusätzlich wird ein Test mit erhöhter Betriebsfrequenz vorgestellt, der im Selbsttest kleine Verzögerungsfehler erkennt.As a result of the fact, that todays integrated circuits have smaller features sizes, higher frequencies and are more energy efficient, weak spots can occur in the system. These weak spots can be undetected by the production test, but during system operation they can lead to hard failures, because of increasing susceptibility to intrinsic and external disturbances or aging effects. This early system breakdown is called „early-life failure“ and cannot be detected by a standard test without any adjustments. Indicators of early-life failures could be intermittent faults and also small delay defects. In this thesis a built-in self-test is presented, which characterizes faulty behavior to detect weak spots and avoid early-life failures, especially caused by intermittent faults or small delay defects, with low hardware and time overhead by using a standard test set. In a first step, the test procedure can distinguish between permanent and non-permanent faults. After that, a diagnosis process and Bayesian reasoning implement the classification of the non-permanent faults. With this procedure the product quality can be increased without additional yield loss. Furthermore a Faster-than-at-Speed-Test (FAST) will be introduced, which allows detecting SDDs in a built-in self-test environment without any changes in the ATPG flow.von Dipl.-Wirt.-Ing. Thomas Indlekofer ; Erster Gutachter: Prof. Dr. Sybille Hellebrand, Zweiter Gutachter: Prof. Dr. Ilia PolianTag der Verteidigung: 03.03.2016Fakultät für Elektrotechnik, Informatik und Mathematik der Universität Paderborn, Univ., Dissertation, 201

    New innovations in pavement materials and engineering: A review on pavement engineering research 2021

    Get PDF
    Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods, new technologies and new materials related to pavement engineering are emerging. Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering (English Edition) has launched a review paper on the topic of “New innovations in pavement materials and engineering: A review on pavement engineering research 2021”. Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials, multi-scale mechanics, green and sustainable pavement, and intelligent pavement. Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering

    PROCEEDINGS 5th PLATE Conference

    Get PDF
    The 5th international PLATE conference (Product Lifetimes and the Environment) addressed product lifetimes in the context of sustainability. The PLATE conference, which has been running since 2015, has successfully been able to establish a solid network of researchers around its core theme. The topic has come to the forefront of current (political, scientific & societal) debates due to its interconnectedness with a number of recent prominent movements, such as the circular economy, eco-design and collaborative consumption. For the 2023 edition of the conference, we encouraged researchers to propose how to extend, widen or critically re-construct thematic sessions for the PLATE conference, and the paper call was constructed based on these proposals. In this 5th PLATE conference, we had 171 paper presentations and 238 participants from 14 different countries. Beside of paper sessions we organized workshops and REPAIR exhibitions
    corecore