92,848 research outputs found

    Adaptive Fault Diagnosis of Motors Using Comprehensive Learning Particle Swarm Optimizer with Fuzzy Petri Net

    Get PDF
    This study proposes and applies a comprehensive learning particle swarm optimization (CLPSO) fuzzy Petri net (FPN) algorithm, which is based on the CLPSO algorithm and FPN, to the fault diagnosis of a complex motor. First, the transition confidence is replaced by a Gaussian function to deal with the uncertainty of fault propagation. Then, according to the Petri net principle, a competition operator is introduced to improve the matrix reasoning. Finally, a CLPSO-FPN model for motor fault diagnosis is established based on the motor failure mechanism and fault characteristics. The CLPSO algorithm is used to generate the system parameters for fault diagnosis and to improve the adaptability and accuracy of fault diagnosis. This study considers the example of a three-phase asynchronous motor. The results show that the proposed algorithm can diagnose faults in this motor with satisfactory adaptability and accuracy compared with the traditional FPN algorithm. By establishing the system model, the fault propagation process of motors can be accurately and intuitively expressed, thus improving the fault treatment and equipment maintenance of motors

    Fault Diagnosis & Field Measurement Prediction Techniques for a Gas Metering System

    Get PDF
    This report discusses on research regarding fault diagnosis system for a process plant. In this project, the process studied is Petronas gas metering system to Kapar Power Plant. There are two parts to this project. The first part is focused on proposing a backup fault diagnosis method for this gas metering system. The second part of the project is to propose suitable field measurement prediction techniques, which could be used in the event of a fault or intermediate condition. In order to achieve the first objective, this report first discusses the potential fault diagnosis methods which can be applied to the metering system. The advantages and disadvantages of each method were evaluated. From evaluation, it was chosen to propose fault diagnosis system using Adaptive Neuro Fuzzy Inference System (ANFIS). In order to carry out fault diagnosis, data is first filtered into fault data and healthy data. The faults filtered in this report include transmitter fault and hang fault for parameters of Temperature, Pressure and Gross Volume. Once healthy data was identified, it was further classified into normal and intermediate categories. This process was done through three different methods, which are the hyperbox model, linear model and ANFIS model. Once these models were analysed, the writer has chosen to proceed with ANFIS model for data classification. Classified data was then grouped into clusters. The second part of the project is focused on proposing suitable field measurement prediction technique using ANFIS that can be used in the event of fault or intermediate conditions. Six different ANFIS models were developed to estimate parameters Temperature, Pressure and Gross Volume during transmitter and hang fault. Five variables such as ANFIS input, data division, number of epoch for training, type of membership function and randomisation of data were varied in order to develop the best model. ANFIS prediction model for Temperature produced satisfactory results of less than 1% error. ANFIS prediction model for Pressure and Gross Volume on the other hand need to be further developed to meet industrial requirements

    New Approach for a Fault Detect Model-Based Controller: New Approach for a Fault Detect Model-Based Controller

    Get PDF
    In this paper, we present a design of a new fault detect model-based (FDMB) controller system. The system is aimed to detect faults quickly and reconfigure the controller accordingly. Thus, such system can perform its function correctly even in the presence of internal faults. An FDMB controller consists of two main parts, the first is fault detection and diagnosis (FDD); and the second is controller reconfiguration (CR). Systems subject to such faults are modelled as stochastic hybrid dynamic model. Each fault is deterministically represented by a mode in a discrete set of models. The FDD is used with interacting multiple-model (IMM) estimator and the CR is used with generalized predictive control (GPC) algorithm. Simulations for the proposed controller are illustrated and analysed

    Crack detection in rotating shafts using wavelet analysis, Shannon entropy and multi-class SVM

    Get PDF
    Incipient fault diagnosis is essential to detect potential abnormalities and failures in industrial processes which contributes to the implementation of fault-tolerant operations for minimizing performance degradation. In this paper, an innovative method named Self-adaptive Entropy Wavelet (SEW) is proposed to detect incipient transverse crack faults on rotating shafts. Continuous Wavelet Transform (CWT) is applied to obtain optimized wavelet function using impulse modelling and decompose a signal into multi-scale wavelet coeļ¬ƒcients. Dominant features are then extracted from those vectors using Shannon entropy, which can be used to discriminate fault information in diļ¬€erent conditions of shafts. Support Vector Machine (SVM) is carried out to classify fault categories which identiļ¬es the severity of crack faults. After that, the effectiveness of this proposed approach is investigated in testing phrase by checking the consistency between testing samples with obtained model, the result of which has proved that this proposed approach can be effectively adopted for fault diagnosis of the occurrence of incipient crack failures on shafts in rotating machinery

    Modelling and Detecting Faults of Permanent Magnet Synchronous Motors in Dynamic Operations

    Get PDF
    Paper VI is excluded from the dissertation until the article will be published.Permanent magnet synchronous motors (PMSMs) have played a key role in commercial and industrial applications, i.e. electric vehicles and wind turbines. They are popular due to their high efficiency, control simplification and large torque-to-size ratio although they are expensive. A fault will eventually occur in an operating PMSM, either by improper maintenance or wear from thermal and mechanical stresses. The most frequent PMSM faults are bearing faults, short-circuit and eccentricity. PMSM may also suffer from demagnetisation, which is unique in permanent magnet machines. Condition monitoring or fault diagnosis schemes are necessary for detecting and identifying these faults early in their incipient state, e.g. partial demagnetisation and inter-turn short circuit. Successful fault classification will ensure safe operations, speed up the maintenance process and decrease unexpected downtime and cost. The research in recent years is drawn towards fault analysis under dynamic operating conditions, i.e. variable load and speed. Most of these techniques have focused on the use of voltage, current and torque, while magnetic flux density in the air-gap or the proximity of the motor has not yet been fully capitalised. This dissertation focuses on two main research topics in modelling and diagnosis of faulty PMSM in dynamic operations. The first problem is to decrease the computational burden of modelling and analysis techniques. The first contributions are new and faster methods for computing the permeance network model and quadratic time-frequency distributions. Reducing their computational burden makes them more attractive in analysis or fault diagnosis. The second contribution is to expand the model description of a simpler model. This can be achieved through a field reconstruction model with a magnet library and a description of both magnet defects and inter-turn short circuits. The second research topic is to simplify the installation and complexity of fault diagnosis schemes in PMSM. The aim is to reduce required sensors of fault diagnosis schemes, regardless of operation profiles. Conventional methods often rely on either steady-state or predefined operation profiles, e.g. start-up. A fault diagnosis scheme robust to any speed changes is desirable since a fault can be detected regardless of operations. The final contribution is the implementation of reinforcement learning in an active learning scheme to address the imbalance dataset problem. Samples from a faulty PMSM are often initially unavailable and expensive to acquire. Reinforcement learning with a weighted reward function might balance the dataset to enhance the trained fault classifierā€™s performance.publishedVersio

    Research on Fault Diagnosis Method Based on Rule Base Neural Network

    Get PDF
    The relationship between fault phenomenon and fault cause is always nonlinear, which influences the accuracy of fault location. And neural network is effective in dealing with nonlinear problem. In order to improve the efficiency of uncertain fault diagnosis based on neural network, a neural network fault diagnosis method based on rule base is put forward. At first, the structure of BP neural network is built and the learning rule is given. Then, the rule base is built by fuzzy theory. An improved fuzzy neural construction model is designed, in which the calculated methods of node function and membership function are also given. Simulation results confirm the effectiveness of this method

    TFN: An Interpretable Neural Network with Time-Frequency Transform Embedded for Intelligent Fault Diagnosis

    Full text link
    Convolutional Neural Networks (CNNs) are widely used in fault diagnosis of mechanical systems due to their powerful feature extraction and classification capabilities. However, the CNN is a typical black-box model, and the mechanism of CNN's decision-making are not clear, which limits its application in high-reliability-required fault diagnosis scenarios. To tackle this issue, we propose a novel interpretable neural network termed as Time-Frequency Network (TFN), where the physically meaningful time-frequency transform (TFT) method is embedded into the traditional convolutional layer as an adaptive preprocessing layer. This preprocessing layer named as time-frequency convolutional (TFconv) layer, is constrained by a well-designed kernel function to extract fault-related time-frequency information. It not only improves the diagnostic performance but also reveals the logical foundation of the CNN prediction in the frequency domain. Different TFT methods correspond to different kernel functions of the TFconv layer. In this study, four typical TFT methods are considered to formulate the TFNs and their effectiveness and interpretability are proved through three mechanical fault diagnosis experiments. Experimental results also show that the proposed TFconv layer can be easily generalized to other CNNs with different depths. The code of TFN is available on https://github.com/ChenQian0618/TFN.Comment: 20 pages, 15 figures, 5 table

    Filter-informed Spectral Graph Wavelet Networks for Multiscale Feature Extraction and Intelligent Fault Diagnosis

    Full text link
    Intelligent fault diagnosis has been increasingly improved with the evolution of deep learning (DL) approaches. Recently, the emerging graph neural networks (GNNs) have also been introduced in the field of fault diagnosis with the goal to make better use of the inductive bias of the interdependencies between the different sensor measurements. However, there are some limitations with these GNN-based fault diagnosis methods. First, they lack the ability to realize multiscale feature extraction due to the fixed receptive field of GNNs. Secondly, they eventually encounter the over-smoothing problem with increase of model depth. Lastly, the extracted features of these GNNs are hard to understand owing to the black-box nature of GNNs. To address these issues, a filter-informed spectral graph wavelet network (SGWN) is proposed in this paper. In SGWN, the spectral graph wavelet convolutional (SGWConv) layer is established upon the spectral graph wavelet transform, which can decompose a graph signal into scaling function coefficients and spectral graph wavelet coefficients. With the help of SGWConv, SGWN is able to prevent the over-smoothing problem caused by long-range low-pass filtering, by simultaneously extracting low-pass and band-pass features. Furthermore, to speed up the computation of SGWN, the scaling kernel function and graph wavelet kernel function in SGWConv are approximated by the Chebyshev polynomials. The effectiveness of the proposed SGWN is evaluated on the collected solenoid valve dataset and aero-engine intershaft bearing dataset. The experimental results show that SGWN can outperform the comparative methods in both diagnostic accuracy and the ability to prevent over-smoothing. Moreover, its extracted features are also interpretable with domain knowledge

    Real Time Monitoring and Neuro-Fuzzy Based Fault Diagnosis of Flow Process in Hybrid System

    Get PDF
    Process variables vary with time in certain applications. Monitoring systems let us avoid severe economic losses resulting from unexpected electric system failures by improving the system reliability and maintainability The installation and maintenance of such monitoring systems is easy when it is implemented using wireless techniques. ZigBee protocol, that is a wireless technology developed as open global standard to address the low-cost, low-power wireless sensor networks. The goal is to monitor the parameters and to classify the parameters in normal and abnormal conditions to detect fault in the process as early as possible by using artificial intelligent techniques. A key issue is to prevent local faults to be developed into system failures that may cause safety hazards, stop temporarily the production and possible detrimental environment impact. Several techniques are being investigated as an extension to the traditional fault detection and diagnosis. Computational intelligence techniques are being investigated as an extension to the traditional fault detection and diagnosis methods. This paper proposes ANFIS (Adaptive Neural Fuzzy Inference System) for fault detection and diagnosis. In ANFIS, the fuzzy logic will create the rules and membership functions whereas the neural network trains the membership function to get the best output. The output of ANFIS is compared with Back Propagation Algorithm (BPN) algorithm of neural network. The training and testing data required to develop the ANFIS model were generated at different operating conditions by running the process and by creating various faults in real time in a laboratory experimental model

    Decentralized Fault Diagnosis and Prognosis Scheme for Interconnected Nonlinear Discrete-Time Systems

    Get PDF
    This paper deals with the design of a decentralized fault diagnosis and prognosis scheme for interconnected nonlinear discrete-time systems which are modelled as the interconnection of several subsystems. For each subsystem, a local fault detector (LFD) is designed based on the dynamic model of the local subsystem and the local states. Each LFD consists of an observer with an online neural network (NN)-based approximator. The online NN approximators only use local measurements as their inputs, and are always turned on and continuously learn the interconnection as well as possible fault function. A fault is detected by comparing the output of each online NN approximator with a predefined threshold instead of using the residual. Derivation of robust detection thresholds and fault detectability conditions are also included. Due to interconnected nature of the overall system, the effect of faults propagate to other subsystems, thus a fault might be detected in more than one subsystem. Upon detection, faults local to the subsystem and from other subsystems are isolated by using a central fault isolation unit which receives detection time information from all LFDs. The proposed scheme also provides the time-to-failure or remaining useful life information by using local measurements. Simulation results provide the effectiveness of the proposed decentralized fault detection scheme
    • ā€¦
    corecore