360 research outputs found

    Diagnosis of hypoglycemic episodes using a neural network based rule discovery system

    Get PDF
    Hypoglycemia or low blood glucose is dangerous and can result in unconsciousness, seizures and even death for Type 1 diabetes mellitus (T1DM) patients. Based on the T1DM patients’ physiological parameters, corrected QT interval of the electrocardiogram (ECG) signal, change of heart rate, and the change of corrected QT interval, we have developed a neural network based rule discovery system with hybridizing the approaches of neural networks and genetic algorithm to identify the presences of hypoglycemic episodes for TIDM patients. The proposed neural network based rule discovery system is built and is validated by using the real T1DM patients’ data sets collected from Department of Health, Government of Western Australia. Experimental results show that the proposed neural network based rule discovery system can achieve more accurate results on both trained and unseen T1DM patients’ data sets compared with those developed based on the commonly used classification methods for medical diagnosis, statistical regression, fuzzy regression and genetic programming. Apart from the achievement of these better results, the proposed neural network based rule discovery system can provide explicit information in the form of production rules which compensate for the deficiency of traditional neural network method which do not provide a clear understanding of how they work in prediction as they are in an implicit black-box structure. This explicit information provided by the product rules can convince medical doctors to use the neural networks to perform diagnosis of hypoglycemia on T1DM patients

    A hypoglycemic episode diagnosis system based on neural networks for Type 1 diabetes mellitus

    Get PDF
    Hypoglycemia (or low blood glucose) is dangerous for Type 1 diabetes mellitus (T1DM) patients, as this can cause unconsciousness or even death. However, it is impossible to monitor the hypoglycemia by measuring patients’ blood glucose levels all the time, especially at night. In this paper, a hypoglycemic episode diagnosis system is proposed to determine T1DM patients’ blood glucose levels based on these patients’ physiological parameters which can be measured online. It can be used not only to diagnose hypoglycemic episodes in T1DM patients, but also to generate a set of rules, which describe the domains of physiological parameters that lead to hypoglycemic episodes. The hypoglycemic episode diagnosis system addresses the limitations of the traditional neural network approaches which cannot generate implicit information. The performance of the proposed hypoglycemic episode diagnosis system is evaluated by using real T1DM patients’ data sets collected from the Department of Health, Government of Western Australia, Australia. Results show that satisfactory diagnosis accuracy can be obtained. Also, explicit knowledge can be produced such that the deficiency of traditional neural networks can be overcome. A clear understanding of how they perform diagnosis can be indicated

    A novel extreme learning machine for hypoglycemia detection

    Full text link
    © 2014 IEEE. Hypoglycemia is a common side-effect of insulin therapy for patients with type 1 diabetes mellitus (T1DM) and is the major limiting factor to maintain tight glycemic control. The deficiency in glucose counter-regulation may even lead to severe hypoglycaemia. It is always threatening to the well-being of patients with T1DM since more severe hypoglycemia leads to seizures or loss of consciousness and the possible development of permanent brain dysfunction under certain circumstances. Thus, an accurate early detection on hypoglycemia is an important research topic. With the use of new emerging technology, an extreme learning machine (ELM) based hypoglycemia detection system is developed to recognize the presence of hypoglycemic episodes. From a clinical study of 16 children with T1DM, natural occurrence of nocturnal hypoglycemic episodes are associated with increased heart rates (p < 0.06) and increased corrected QT intervals (p < 0.001). The overall data were organized into a training set with 8 patients (320 data points) and a testing set with 8 patients (269 data points). By using the ELM trained feed-forward neural network (ELM-FFNN), the testing sensitivity (true positive) and specificity (true negative) for detection of hypoglycemia is 78 and 60% respectability

    Non-invasive hypoglycemia monitoring system using extreme learning machine for Type 1 diabetes

    Full text link
    © 2016 ISA Hypoglycemia is a very common in type 1 diabetic persons and can occur at any age. It is always threatening to the well-being of patients with Type 1 diabetes mellitus (T1DM) since hypoglycemia leads to seizures or loss of consciousness and the possible development of permanent brain dysfunction under certain circumstances. Because of that, an accurate continuing hypoglycemia monitoring system is a very important medical device for diabetic patients. In this paper, we proposed a non-invasive hypoglycemia monitoring system using the physiological parameters of electrocardiography (ECG) signal. To enhance the detection accuracy, extreme learning machine (ELM) is developed to recognize the presence of hypoglycemia. A clinical study of 16 children with T1DM is given to illustrate the good performance of ELM

    EDMON - Electronic Disease Surveillance and Monitoring Network: A Personalized Health Model-based Digital Infectious Disease Detection Mechanism using Self-Recorded Data from People with Type 1 Diabetes

    Get PDF
    Through time, we as a society have been tested with infectious disease outbreaks of different magnitude, which often pose major public health challenges. To mitigate the challenges, research endeavors have been focused on early detection mechanisms through identifying potential data sources, mode of data collection and transmission, case and outbreak detection methods. Driven by the ubiquitous nature of smartphones and wearables, the current endeavor is targeted towards individualizing the surveillance effort through a personalized health model, where the case detection is realized by exploiting self-collected physiological data from wearables and smartphones. This dissertation aims to demonstrate the concept of a personalized health model as a case detector for outbreak detection by utilizing self-recorded data from people with type 1 diabetes. The results have shown that infection onset triggers substantial deviations, i.e. prolonged hyperglycemia regardless of higher insulin injections and fewer carbohydrate consumptions. Per the findings, key parameters such as blood glucose level, insulin, carbohydrate, and insulin-to-carbohydrate ratio are found to carry high discriminative power. A personalized health model devised based on a one-class classifier and unsupervised method using selected parameters achieved promising detection performance. Experimental results show the superior performance of the one-class classifier and, models such as one-class support vector machine, k-nearest neighbor and, k-means achieved better performance. Further, the result also revealed the effect of input parameters, data granularity, and sample sizes on model performances. The presented results have practical significance for understanding the effect of infection episodes amongst people with type 1 diabetes, and the potential of a personalized health model in outbreak detection settings. The added benefit of the personalized health model concept introduced in this dissertation lies in its usefulness beyond the surveillance purpose, i.e. to devise decision support tools and learning platforms for the patient to manage infection-induced crises

    Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection

    Full text link
    Cardiac arrhythmia relating to hypoglycemia is suggested as a cause of death in diabetic patients. This article introduces electrocardiographic (ECG) parameters for artificially induced hypoglycemia detection. In addition, a hybrid technique of swarm-based support vector machine (SVM) is introduced for hypoglycemia detection using the ECG parameters as inputs. In this technique, a particle swarm optimization (PSO) is proposed to optimize the SVM to detect hypoglycemia. In an experiment using medical data of patients with Type 1 diabetes, the introduced ECG parameters show significant contributions to the performance of the hypoglycemia detection and the proposed detection technique performs well in terms of sensitivity and specificity. © 2011 Biomedical Engineering Society

    A Self-Attention Deep Neural Network Regressor for real time blood glucose estimation in paediatric population using physiological signals

    Get PDF
    With the advent of modern digital technology, the physiological signals (such as electrocardiogram) are being acquired from portable wearable devices which are being used for non-invasive chronic disease management (such as Type 1 Diabetes). The diabetes management requires real-time assessment of blood glucose which is cumbersome for paediatric population due to clinical complexity and invasiveness. Therefore, real-time non-invasive blood glucose estimation is now pivotal for effective diabetes management. In this paper, we propose a Self-Attention Deep Neural Network Regressor for real-time non-invasive blood glucose estimation for paediatric population based on automatically extracted beat morphology. The first stage performs Morphological Extractor based on Self-Attention based Long Short-Term Memory driven by Convolutional Neural Network for highlighting local features based on temporal context. The second stage is based on Morphological Regressor driven by multilayer perceptron with dropout and batch normalization to avoid overfitting. We performed feature selection via logit model followed by Spearman's correlation among features to avoid feature redundancy. We trained as tested our model on publicly available MIT/BIH-Physionet databases and physiological signals acquired from a T1D paediatric population. We performed our evaluation via Clarke's Grid error to analyse estimation accuracy on range of blood values under different glycaemic conditions. The results show that our tool outperformed existing regression models with 89% accuracy under clinically acceptable range. The proposed model based on beat morphology significantly outperformed models based on HRV features

    Identification of significant factors for air pollution levels using a neural network based knowledge discovery system

    Get PDF
    Artificial neural network (ANN) is a commonly used approach to estimate or forecast air pollution levels, which are usually assessed by the concentrations of air contaminants such as nitrogen dioxide, sulfur dioxide, carbon monoxide, ozone, and suspended particulate matters (PMs) in the atmosphere of the concerned areas. Even through ANN can accurately estimate air pollution levels they are numerical enigmas and unable to provide explicit knowledge of air pollution levels by air pollution factors (e.g. traffic and meteorological factors). This paper proposed a neural network based knowledge discovery system aimed at overcoming this limitation in ANN. The system consists of two units: a) an ANN unit, which is used to estimate the air pollution levels based on relevant air pollution factors; b) a knowledge discovery unit, which is used to extract explicit knowledge from the ANN unit. To demonstrate the practicability of this neural network based knowledge discovery system, numerical data on mass concentrations of PM2.5 and PM1.0, meteorological and traffic data measured near a busy traffic road in Hangzhou city were applied to investigate the air pollution levels and the potential air pollution factors that may impact on the concentrations of these PMs. Results suggest that the proposed neural network based knowledge discovery system can accurately estimate air pollution levels and identify significant factors that have impact on air pollution levels

    Disease diagnosis in smart healthcare: Innovation, technologies and applications

    Get PDF
    To promote sustainable development, the smart city implies a global vision that merges artificial intelligence, big data, decision making, information and communication technology (ICT), and the internet-of-things (IoT). The ageing issue is an aspect that researchers, companies and government should devote efforts in developing smart healthcare innovative technology and applications. In this paper, the topic of disease diagnosis in smart healthcare is reviewed. Typical emerging optimization algorithms and machine learning algorithms are summarized. Evolutionary optimization, stochastic optimization and combinatorial optimization are covered. Owning to the fact that there are plenty of applications in healthcare, four applications in the field of diseases diagnosis (which also list in the top 10 causes of global death in 2015), namely cardiovascular diseases, diabetes mellitus, Alzheimer’s disease and other forms of dementia, and tuberculosis, are considered. In addition, challenges in the deployment of disease diagnosis in healthcare have been discussed
    • …
    corecore