88 research outputs found

    Exploiting Device-to-Device Communications to Enhance Spatial Reuse for Popular Content Downloading in Directional mmWave Small Cells

    Full text link
    With the explosive growth of mobile demand, small cells in millimeter wave (mmWave) bands underlying the macrocell networks have attracted intense interest from both academia and industry. MmWave communications in the 60 GHz band are able to utilize the huge unlicensed bandwidth to provide multiple Gbps transmission rates. In this case, device-to-device (D2D) communications in mmWave bands should be fully exploited due to no interference with the macrocell networks and higher achievable transmission rates. In addition, due to less interference by directional transmission, multiple links including D2D links can be scheduled for concurrent transmissions (spatial reuse). With the popularity of content-based mobile applications, popular content downloading in the small cells needs to be optimized to improve network performance and enhance user experience. In this paper, we develop an efficient scheduling scheme for popular content downloading in mmWave small cells, termed PCDS (popular content downloading scheduling), where both D2D communications in close proximity and concurrent transmissions are exploited to improve transmission efficiency. In PCDS, a transmission path selection algorithm is designed to establish multi-hop transmission paths for users, aiming at better utilization of D2D communications and concurrent transmissions. After transmission path selection, a concurrent transmission scheduling algorithm is designed to maximize the spatial reuse gain. Through extensive simulations under various traffic patterns, we demonstrate PCDS achieves near-optimal performance in terms of delay and throughput, and also superior performance compared with other existing protocols, especially under heavy load.Comment: 12 pages, to appear in IEEE Transactions on Vehicular Technolog

    A Marketplace for Efficient and Secure Caching for IoT Applications in 5G Networks

    Get PDF
    As the communication industry is progressing towards fifth generation (5G) of cellular networks, the traffic it carries is also shifting from high data rate traffic from cellular users to a mixture of high data rate and low data rate traffic from Internet of Things (IoT) applications. Moreover, the need to efficiently access Internet data is also increasing across 5G networks. Caching contents at the network edge is considered as a promising approach to reduce the delivery time. In this paper, we propose a marketplace for providing a number of caching options for a broad range of applications. In addition, we propose a security scheme to secure the caching contents with a simultaneous potential of reducing the duplicate contents from the caching server by dividing a file into smaller chunks. We model different caching scenarios in NS-3 and present the performance evaluation of our proposal in terms of latency and throughput gains for various chunk sizes

    Finding Mobile Applications in Cellular Device-to-Device Communications: Hash Function and Bloom Filter-Based Approach

    Get PDF
    The rapid growth of mobile computing technology and wireless communication have significantly increased the mobile users worldwide. We propose a code-based discovery protocol for cellular device-to-device (D2D) communications. To realize proximity based services such as mobile social networks and mobile marketing using D2D communications, each device should first discover nearby devices, which have mobile applications of interest, by using a discovery protocol. The proposed discovery protocol makes use of a short discovery code that contains compressed information of mobile applications in a device. A discovery code is generated by using either a hash function or a Bloom filter. When a device receives a discovery code broadcast by another device, the device can approximately find out the mobile applications in the other device. The proposed protocol is capable of quickly discovering massive number of devices while consuming a relatively small amount of radio resources. We analyze the performance of the proposed protocol under the random direction mobility model and a real mobility trace. By simulations, we show that the analytical results well match the simulation results and that the proposed protocol greatly outperforms a simple non-filtering protoco

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    Trust and reputation management for securing collaboration in 5G access networks: the road ahead

    Get PDF
    Trust represents the belief or perception of an entity, such as a mobile device or a node, in the extent to which future actions and reactions are appropriate in a collaborative relationship. Reputation represents the network-wide belief or perception of the trustworthiness of an entity. Each entity computes and assigns a trust or reputation value, which increases and decreases with the appropriateness of actions and reactions, to another entity in order to ensure a healthy collaborative relationship. Trust and reputation management (TRM) has been investigated to improve the security of traditional networks, particularly the access networks. In 5G, the access networks are multi-hop networks formed by entities which may not be trustable, and so such networks are prone to attacks, such as Sybil and crude attacks. TRM addresses such attacks to enhance the overall network performance, including reliability, scalability, and stability. Nevertheless, the investigation of TRM in 5G, which is the next-generation wireless networks, is still at its infancy. TRM must cater for the characteristics of 5G. Firstly, ultra-densification due to the exponential growth of mobile users and data traffic. Secondly, high heterogeneity due to the different characteristics of mobile users, such as different transmission characteristics (e.g., different transmission power) and different user equipment (e.g., laptops and smartphones). Thirdly, high variability due to the dynamicity of the entities’ behaviors and operating environment. TRM must also cater for the core features of 5G (e.g., millimeter wave transmission, and device-to-device communication) and the core technologies of 5G (e.g., massive MIMO and beamforming, and network virtualization). In this paper, a review of TRM schemes in 5G and traditional networks, which can be leveraged to 5G, is presented. We also provide an insight on some of the important open issues and vulnerabilities in 5G networks that can be resolved using a TRM framework
    corecore