4 research outputs found

    Wi-Fi For Indoor Device Free Passive Localization (DfPL): An Overview

    Get PDF
    The world is moving towards an interconnected and intercommunicable network of animate and inanimate objects with the emergence of Internet of Things (IoT) concept which is expected to have 50 billion connected devices by 2020. The wireless communication enabled devices play a major role in the realization of IoT. In Malaysia, home and business Internet Service Providers (ISP) bundle Wi-Fi modems working in 2.4 GHz Industrial, Scientific and Medical (ISM) radio band with their internet services. This makes Wi-Fi the most eligible protocol to serve as a local as well as internet data link for the IoT devices. Besides serving as a data link, human entity presence and location information in a multipath rich indoor environment can be harvested by monitoring and processing the changes in the Wi-Fi Radio Frequency (RF) signals. This paper comprehensively discusses the initiation and evolution of Wi-Fi based Indoor Device free Passive Localization (DfPL) since the concept was first introduced by Youssef et al. in 2007. Alongside the overview, future directions of DfPL in line with ongoing evolution of Wi-Fi based IoT devices are briefly discussed in this paper

    Sub-Nanosecond Time of Flight on Commercial Wi-Fi Cards

    Full text link
    Time-of-flight, i.e., the time incurred by a signal to travel from transmitter to receiver, is perhaps the most intuitive way to measure distances using wireless signals. It is used in major positioning systems such as GPS, RADAR, and SONAR. However, attempts at using time-of-flight for indoor localization have failed to deliver acceptable accuracy due to fundamental limitations in measuring time on Wi-Fi and other RF consumer technologies. While the research community has developed alternatives for RF-based indoor localization that do not require time-of-flight, those approaches have their own limitations that hamper their use in practice. In particular, many existing approaches need receivers with large antenna arrays while commercial Wi-Fi nodes have two or three antennas. Other systems require fingerprinting the environment to create signal maps. More fundamentally, none of these methods support indoor positioning between a pair of Wi-Fi devices without~third~party~support. In this paper, we present a set of algorithms that measure the time-of-flight to sub-nanosecond accuracy on commercial Wi-Fi cards. We implement these algorithms and demonstrate a system that achieves accurate device-to-device localization, i.e. enables a pair of Wi-Fi devices to locate each other without any support from the infrastructure, not even the location of the access points.Comment: 14 page

    Novel approach to FM-based device free passive indoor localization through neural networks

    Get PDF
    Indoor Localization has been one of the most extensively researched topics for the past couple of years with a recent surge in a specific area of Device-free localization in wireless environments. Particularly FM-radio based technologies are being been preferred over WiFi-based technologies due to better penetration indoors and free availability. The major challenges for obtaining a consistent and highly accurate indoor FM based system are susceptibility to human presence, multipath fading and environmental changes. Our research works around these limitations and utilizes the environment itself to establish stronger fingerprints and thus creating a robust localization system. This novel thesis also investigates the feasibility of using neural networks to solve the problem of accuracy degradation when using a single passive receiver across multiple ambient FM radio stations. The system achieves high fidelity and temporal stability to the tunes of 95% by utilizing pattern recognition techniques for the multiple channel spectra

    Device-free indoor localization using ambient radio signals

    No full text
    This paper investigates feasibility of device-free indoor localization using single passive receiver. Instead of local wireless nodes sharing one frequency channel, this work leverages multiple ambient FM radio stations. Experimental results demonstrate feasibility of the proposed approach and highlight the role of frequency diversity for passive localization
    corecore