10 research outputs found

    A Non-Stationary Channel Model for the Development of Non-Wearable Radio Fall Detection Systems

    Get PDF
    The emerging non-wearable fall detection systems rely on processing radio waves reflected off the body of the home user who has no active interaction with the system, increasing the user privacy and acceptability. This paper proposes a nonstationary channel model that is important for the development of such systems. A three-dimensional stochastic trajectory model is designed to capture targeted mobility patterns of the home user. The model is featured with a forward fall mechanism, which is actuated at a random point along the path. A transmitter emits radio waves throughout an indoor propagation environment, while a receiver collects fingerprints of the scattering objects on the emitted waves. The corresponding radio channel is modelled by a process capturing the time-variant Doppler effect caused by the home occupant. The time-frequency behaviour of the non-stationary channel is studied by computing the Doppler power spectral density and by performing spectrogram analysis. The instantaneous mean Doppler shift and Doppler spread are derived and simulated. The model is confirmed with experimental results performed at 5.9 GHz. The results are insightful for developing reliable fall detection algorithms, while the model is useful for studying the impact of different walking/falling patterns on the overall fall detection system performance.A Non-Stationary Channel Model for the Development of Non-Wearable Radio Fall Detection SystemsacceptedVersionNivĂĄ

    Device-Free RF Human Body Fall Detection and Localization in Industrial Workplaces

    No full text

    Combining wearables and nearables for patient state analysis

    Get PDF
    Recently, ambient patient monitoring using wearable and nearable sensors is becoming more prevalent, especially in the neurodegenerative (Rett syndrome) and sleep disorder (Obstructive sleep apnea) populations. While wearables capture localized physiological data such as pulse rate, wrist acceleration and brain signals, nearables record global passive data including body movements, ambient sound and environmental variables. Together, wearables and nearables provide a more comprehensive understanding of the patient state. The processing of data captured from wearables and nearables have multiple challenges including handling missing data, time synchronization between sensors and developing data fusion techniques for multimodal analysis. The research described in this thesis addresses these issues while working on data captured in the wild. First, we describe a Rett syndrome severity estimator using a wearable biosensor and uncover physio-motor biomarkers. Second, we present the applications of an edge computing and ambient data capture system for home and clinical environments. Finally, we describe a transfer learning and multimodal data fusion based sleep-wake detector for a mixed-disorder elderly population. We show that combining data from wearables and nearables improves the performance of sleep-wake detection in terms of the F1-score and the Cohen’s kappa compared to the unimodal models.Ph.D
    corecore