2,547 research outputs found
A Compact Microchip-Based Atomic Clock Based on Ultracold Trapped Rb Atoms
We propose a compact atomic clock based on ultracold Rb atoms that are
magnetically trapped near the surface of an atom microchip. An interrogation
scheme that combines electromagnetically-induced transparency (EIT) with
Ramsey's method of separated oscillatory fields can achieve atomic shot-noise
level performance of 10^{-13}/sqrt(tau) for 10^6 atoms. The EIT signal can be
detected with a heterodyne technique that provides noiseless gain; with this
technique the optical phase shift of a 100 pW probe beam can be detected at the
photon shot-noise level. Numerical calculations of the density matrix equations
are used to identify realistic operating parameters at which AC Stark shifts
are eliminated. By considering fluctuations in these parameters, we estimate
that AC Stark shifts can be canceled to a level better than 2*10^{-14}. An
overview of the apparatus is presented with estimates of duty cycle and power
consumption.Comment: 15 pages, 11 figures, 5 table
A new conception experimental test of Bell inequalities using non-maximally entangled states
We report on a test of Bell inequalities using a non-maximally entangled
state, which represents an important step in the direction of eliminating the
detection loophole. The experiment is based on the creation of a polarisation
entangled state via the superposition, by use of an appropriate optics, of the
spontaneous fluorescence emitted by two non-linear crystals driven by the same
pumping laser. The alignment has profitably taken advantage from the use of an
optical amplifier scheme, where a solid state laser is injected into the
crystals together with the pumping laser. In principle a very high total
quantum efficiency can be reached using this configuration and thus the final
version of this experiment can lead to a resolution of the detection loophole,
we carefully discuss the conditions which must be satisfied for reaching this
result.Comment: to be published in Proc. of International Workshop on Optics and
  Spectroscopy (Hanoi, Vietnam
Fundamental phenomena of quantum mechanics explored with neutron interferometers
Ongoing fascination with quantum mechanics keeps driving the development of
the wide field of quantum-optics, including its neutron-optics branch.
Application of neutron-optical methods and, especially, neutron interferometry
and polarimetry has a long-standing tradition for experimental investigations
of fundamental quantum phenomena. We give an overview of related experimental
efforts made in recent years.Comment: Review article, 63 pages, to be published in Prog. Theor. Exp. Phys.
  (2014), some figures replace
Atom Interferometers
Interference with atomic and molecular matter waves is a rich branch of
atomic physics and quantum optics. It started with atom diffraction from
crystal surfaces and the separated oscillatory fields technique used in atomic
clocks. Atom interferometry is now reaching maturity as a powerful art with
many applications in modern science. In this review we first describe the basic
tools for coherent atom optics including diffraction by nanostructures and
laser light, three-grating interferometers, and double wells on AtomChips. Then
we review scientific advances in a broad range of fields that have resulted
from the application of atom interferometers. These are grouped in three
categories: (1) fundamental quantum science, (2) precision metrology and (3)
atomic and molecular physics. Although some experiments with Bose Einstein
condensates are included, the focus of the review is on linear matter wave
optics, i.e. phenomena where each single atom interferes with itself.Comment: submitted to Reviews of Modern Physic
Modern optical astronomy: technology and impact of interferometry
The present `state of the art' and the path to future progress in high
spatial resolution imaging interferometry is reviewed. The review begins with a
treatment of the fundamentals of stellar optical interferometry, the origin,
properties, optical effects of turbulence in the Earth's atmosphere, the
passive methods that are applied on a single telescope to overcome atmospheric
image degradation such as speckle interferometry, and various other techniques.
These topics include differential speckle interferometry, speckle spectroscopy
and polarimetry, phase diversity, wavefront shearing interferometry,
phase-closure methods, dark speckle imaging, as well as the limitations imposed
by the detectors on the performance of speckle imaging. A brief account is
given of the technological innovation of adaptive-optics (AO) to compensate
such atmospheric effects on the image in real time. A major advancement
involves the transition from single-aperture to the dilute-aperture
interferometry using multiple telescopes. Therefore, the review deals with
recent developments involving ground-based, and space-based optical arrays.
Emphasis is placed on the problems specific to delay-lines, beam recombination,
polarization, dispersion, fringe-tracking, bootstrapping, coherencing and
cophasing, and recovery of the visibility functions. The role of AO in
enhancing visibilities is also discussed. The applications of interferometry,
such as imaging, astrometry, and nulling are described. The mathematical
intricacies of the various `post-detection' image-processing techniques are
examined critically. The review concludes with a discussion of the
astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics,
  2002, to appear in April issu
Deformation mechanics of deep surface flaw cracks
A combined analytical and experimental program was conducted to determine the deformation characteristics of deep surface cracks in Mode I loading. An approximate plane finite element analysis was performed to make a parameter study on the influence of crack depth, crack geometry, and stress level on plastic zones, crack opening displacement, and back surface dimpling in Fe-3Si steel and 2219-T87 aluminum. Surface replication and profiling techniques were used to examine back surface dimple configurations in 2219-T87 aluminum. Interferometry and holography were used to evaluate the potential of various optical techniques to detect small surface dimples on large surface areas
Multi-photon entanglement and interferometry
Multi-photon interference reveals strictly non-classical phenomena. Its
applications range from fundamental tests of quantum mechanics to photonic
quantum information processing, where a significant fraction of key experiments
achieved so far comes from multi-photon state manipulation. We review the
progress, both theoretical and experimental, of this rapidly advancing
research. The emphasis is given to the creation of photonic entanglement of
various forms, tests of the completeness of quantum mechanics (in particular,
violations of local realism), quantum information protocols for quantum
communication (e.g., quantum teleportation, entanglement purification and
quantum repeater), and quantum computation with linear optics. We shall limit
the scope of our review to "few photon" phenomena involving measurements of
discrete observables.Comment: 71 pages, 38 figures; updated version accepted by Rev. Mod. Phy
Confocal microscopy
Chapter focusing on confocal microscopy. A confocal microscope is one in which the illumination is confined to a small volume in the specimen, the detection is confined to the same volume and the image is built up by scanning this volume over the specimen, either by moving the beam of light over the specimen or by displacing the specimen relative to a stationary beam. The chief advantage of this type of microscope is that it gives a greatly enhanced discrimination of depth relative to conventional microscopes. Commercial systems appeared in the 1980s and, despite their high cost, the world market for them is probably between 500 and 1000 instruments per annum, mainly because of their use in biomedical research in conjunction with fluorescent labelling methods. There are many books and review articles on this subject ( e.g. Pawley ( 2006) , Matsumoto( 2002), Wilson (1990) ). The purpose of this chapter is to provide an introduction to optical and engineering aspects that may be o f interest to biomedical users of confocal microscopy
Interferometry
The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed
- …
