16,660 research outputs found

    Intelligent computational sketching support for conceptual design

    Get PDF
    Sketches, with their flexibility and suggestiveness, are in many ways ideal for expressing emerging design concepts. This can be seen from the fact that the process of representing early designs by free-hand drawings was used as far back as in the early 15th century [1]. On the other hand, CAD systems have become widely accepted as an essential design tool in recent years, not least because they provide a base on which design analysis can be carried out. Efficient transfer of sketches into a CAD representation, therefore, is a powerful addition to the designers' armoury.It has been pointed out by many that a pen-on-paper system is the best tool for sketching. One of the crucial requirements of a computer aided sketching system is its ability to recognise and interpret the elements of sketches. 'Sketch recognition', as it has come to be known, has been widely studied by people working in such fields: as artificial intelligence to human-computer interaction and robotic vision. Despite the continuing efforts to solve the problem of appropriate conceptual design modelling, it is difficult to achieve completely accurate recognition of sketches because usually sketches implicate vague information, and the idiosyncratic expression and understanding differ from each designer

    Multicolour sketch recognition in a learning environment.

    Get PDF
    Virtual physics environments are becoming increasingly popular as a teaching tool for grade and high school level mechanical physics. While useful, these tools often offer a complex user interface, lacking the intuitive nature of the traditional whiteboard. Furthermore, the systems are often too advanced to be used by novices for further experimentation. In this paper we describe a physics learning environment using multicolour sketch recognition techniques on digital whiteboards. We argue that the use of coloured pens helps to resolve several ambiguities appearing in single colour sketching interfaces. The recognition system is based on a combination of Support Vector Machines and rule based methods. The system was evaluated using a constructive interaction method, with users completing a set task

    The Confluence of Interaction Design & Design: from Disciplinary to Transdisciplinary Perspectives

    Get PDF
    In keeping with the conference theme of rigour and the authors’ interest in sustainability and interaction design, we describe the confluence of design-oriented notions of interaction design and HCI-oriented notions of interaction design in terms of understanding the present and making choices about possible futures. We comment on the variety of research modes in this confluence and then take up the issue of how disciplinarity, multidisciplinarity, and interdisciplinarity operate and fail to operate as boundary crossing mechanisms for these research modes. As a complement and extension to disciplinary, multidisciplinary, and interdisciplinary practices, we take up the notion of transdisciplinarity and describe how it informs the possibility of values-rich free boundary crossing between research modes in the service of real world issues, while still preserving rigour. Keywords: Transdisciplinarity; Interaction Design; Design Research; Sustainability; Disciplinarity; Multidisciplinarity; Interdisciplinarity.</p

    The future of biosensors

    Get PDF
    Since the development of the glucose sensor by Clark and Lyons in 1962, generally recognized as the first biosensor, many types of sensors have been developed in which a physical or chemical transducer is provided with a layer containing a biological sensing element. The resulting device is called a biosensor, aimed to produce an electronic signal as a function of the concentration of a chemical or biochemical constituent of a liquid, not necessarily of biological origin. Among the many proposed concepts, the integration of biologically active materials with a silicon chip is one of the most intriguing approaches, because it seems the most comprehensive integration between biology and electronics. In this paper the resulting biochips, mainly based on the field-effect principle as the coupling mechanism between the two domains, will be described and discussed with an outlook on the future
    • …
    corecore