378,420 research outputs found

    An Ontology for Product-Service Systems

    Get PDF
    Industries are transforming their business strategy from a product-centric to a more service-centric nature by bundling products and services into integrated solutions to enhance the relationship between their customers. Since Product- Service Systems design research is currently at a rudimentary stage, the development of a robust ontology for this area would be helpful. The advantages of a standardized ontology are that it could help researchers and practitioners to communicate their views without ambiguity and thus encourage the conception and implementation of useful methods and tools. In this paper, an initial structure of a PSS ontology from the design perspective is proposed and evaluated

    Design Opportunities in Service-Product Combined Systems

    Get PDF
    This paper aims to examine recent research issues related to the integration of service and product in view of industrial design. Further, it attempts to identify new opportunities for further research regarding “product-servicization” vs. “service-productization”. In the continued efforts to provide the users with fuller experiences, one major trend is the blending of products and services. Much existing research seems to either present cases or propose frameworks regarding the ‘connection’, rather than ‘integration’ between products and services. Broadly, two major approaches seem to exist in this area: 1. product-servicization, 2. service-productization. The former generally indicates adding more services to existing products, whereas the latter generally refers to making services tangible and/or visible in the form of a product. However, findings of an extensive literature search conducted for this study suggest one important deficiency in dealing with service issues around the product: the ‘integration’ between the actual product design and service elements for supporting new service-product system. That is the rationale behind this research, an attempt to investigate the possibility for the integration of product design and service factors which could be embedded in the design of product itself in new service-product system. This paper is largely based on qualitative research. New design research opportunities are identified by qualitatively analyzing relevant literature, synthesizing the information and presenting some cases to support the main argument of the research. Design-led Service-Productization is not, and should not be re-arranging deck chairs on the Titanic. Rather, it should bring practical and tangible design issues related to new service-product system. Findings suggest that this approach could provide a new model of new product development integrated with a service scheme, which is a more proactive approach than “product-servicization”. Further development of this research could lead to establishing a framework for the Design-led Service-Product Integration. Keywords: Product-servicization; Industrial design; Service; Product; Integration</p

    Requirements analysis for decision-support system design: evidence from the automotive industry

    Get PDF
    The purpose of this paper is to outline the requirements analysis that was carried out to support the development of a system that allows engineers to view real-time data integrated from multiple silos such as Product Lifecycle Management (PLM) and Warranty systems, in a single and visual environment. The outcome of this study provides a clear understanding of how engineers working in different phases of the product-lifecycle could utilise such information to improve the decision making process and as a result design better products. This study uses data collected via in-depth semi-structured interviews and workshops that includes people working in various roles within the automotive sector. In order to demonstrate the applicability this approach, SysML diagrams are also provided

    Is the Industrial Product-Service System Really Sustainable

    Get PDF
    As the product-service system has shifted from its original concept to the Industrial PSS, its scope has expanded to include industrial products. Furthermore, the overall goal of reducing environmental impacts has been left behind. Despite the PSS's potential as a business model for a more sustainable production and consumption system, the mere addition of services to conventional products does not necessarily lead to a reduction of environmental impacts. This paper aims to discuss the concepts related to PSS, the need for considering environmental impact reduction as a critical issue for sustainability, and the role of ecodesign practices in the development of PSS

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    The potential of additive manufacturing in the smart factory industrial 4.0: A review

    Get PDF
    Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations
    • 

    corecore