130 research outputs found

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    A Decision Support System (DSS) for Breast Cancer Detection Based on Invariant Feature Extraction, Classification, and Retrieval of Masses of Mammographic Images

    Get PDF
    This paper presents an integrated system for the breast cancer detection from mammograms based on automated mass detection, classification, and retrieval with a goal to support decision-making by retrieving and displaying the relevant past cases as well as predicting the images as benign or malignant. It is hypothesized that the proposed diagnostic aid would refresh the radiologist’s mental memory to guide them to a precise diagnosis with concrete visualizations instead of only suggesting a second diagnosis like many other CAD systems. Towards achieving this goal, a Graph-Based Visual Saliency (GBVS) method is used for automatic mass detection, invariant features are extracted based on using Non-Subsampled Contourlet transform (NSCT) and eigenvalues of the Hessian matrix in a histogram of oriented gradients (HOG), and finally classification and retrieval are performed based on using Support Vector Machines (SVM) and Extreme Learning Machines (ELM), and a linear combination-based similarity fusion approach. The image retrieval and classification performances are evaluated and compared in the benchmark Digital Database for Screening Mammography (DDSM) of 2604 cases by using both the precision-recall and classification accuracies. Experimental results demonstrate the effectiveness of the proposed system and show the viability of a real-time clinical application

    Image processing and machine learning techniques used in computer-aided detection system for mammogram screening - a review

    Get PDF
    This paper aims to review the previously developed Computer-aided detection (CAD) systems for mammogram screening because increasing death rate in women due to breast cancer is a global medical issue and it can be controlled only by early detection with regular screening. Till now mammography is the widely used breast imaging modality. CAD systems have been adopted by the radiologists to increase the accuracy of the breast cancer diagnosis by avoiding human errors and experience related issues. This study reveals that in spite of the higher accuracy obtained by the earlier proposed CAD systems for breast cancer diagnosis, they are not fully automated. Moreover, the false-positive mammogram screening cases are high in number and over-diagnosis of breast cancer exposes a patient towards harmful overtreatment for which a huge amount of money is being wasted. In addition, it is also reported that the mammogram screening result with and without CAD systems does not have noticeable difference, whereas the undetected cancer cases by CAD system are increasing. Thus, future research is required to improve the performance of CAD system for mammogram screening and make it completely automated

    Novel Computer-Aided Diagnosis Schemes for Radiological Image Analysis

    Get PDF
    The computer-aided diagnosis (CAD) scheme is a powerful tool in assisting clinicians (e.g., radiologists) to interpret medical images more accurately and efficiently. In developing high-performing CAD schemes, classic machine learning (ML) and deep learning (DL) algorithms play an essential role because of their advantages in capturing meaningful patterns that are important for disease (e.g., cancer) diagnosis and prognosis from complex datasets. This dissertation, organized into four studies, investigates the feasibility of developing several novel ML-based and DL-based CAD schemes for different cancer research purposes. The first study aims to develop and test a unique radiomics-based CT image marker that can be used to detect lymph node (LN) metastasis for cervical cancer patients. A total of 1,763 radiomics features were first computed from the segmented primary cervical tumor depicted on one CT image with the maximal tumor region. Next, a principal component analysis algorithm was applied on the initial feature pool to determine an optimal feature cluster. Then, based on this optimal cluster, machine learning models (e.g., support vector machine (SVM)) were trained and optimized to generate an image marker to detect LN metastasis. The SVM based imaging marker achieved an AUC (area under the ROC curve) value of 0.841 ± 0.035. This study initially verifies the feasibility of combining CT images and the radiomics technology to develop a low-cost image marker for LN metastasis detection among cervical cancer patients. In the second study, the purpose is to develop and evaluate a unique global mammographic image feature analysis scheme to identify case malignancy for breast cancer. From the entire breast area depicted on the mammograms, 59 features were initially computed to characterize the breast tissue properties in both the spatial and frequency domain. Given that each case consists of two cranio-caudal and two medio-lateral oblique view images of left and right breasts, two feature pools were built, which contain the computed features from either two positive images of one breast or all the four images of two breasts. For each feature pool, a particle swarm optimization (PSO) method was applied to determine the optimal feature cluster followed by training an SVM classifier to generate a final score for predicting likelihood of the case being malignant. The classification performances measured by AUC were 0.79±0.07 and 0.75±0.08 when applying the SVM classifiers trained using image features computed from two-view and four-view images, respectively. This study demonstrates the potential of developing a global mammographic image feature analysis-based scheme to predict case malignancy without including an arduous segmentation of breast lesions. In the third study, given that the performance of DL-based models in the medical imaging field is generally bottlenecked by a lack of sufficient labeled images, we specifically investigate the effectiveness of applying the latest transferring generative adversarial networks (GAN) technology to augment limited data for performance boost in the task of breast mass classification. This transferring GAN model was first pre-trained on a dataset of 25,000 mammogram patches (without labels). Then its generator and the discriminator were fine-tuned on a much smaller dataset containing 1024 labeled breast mass images. A supervised loss was integrated with the discriminator, such that it can be used to directly classify the benign/malignant masses. Our proposed approach improved the classification accuracy by 6.002%, when compared with the classifiers trained without traditional data augmentation. This investigation may provide a new perspective for researchers to effectively train the GAN models on a medical imaging task with only limited datasets. Like the third study, our last study also aims to alleviate DL models’ reliance on large amounts of annotations but uses a totally different approach. We propose employing a semi-supervised method, i.e., virtual adversarial training (VAT), to learn and leverage useful information underlying in unlabeled data for better classification of breast masses. Accordingly, our VAT-based models have two types of losses, namely supervised and virtual adversarial losses. The former loss acts as in supervised classification, while the latter loss works towards enhancing the model’s robustness against virtual adversarial perturbation, thus improving model generalizability. A large CNN and a small CNN were used in this investigation, and both were trained with and without the adversarial loss. When the labeled ratios were 40% and 80%, VAT-based CNNs delivered the highest classification accuracy of 0.740±0.015 and 0.760±0.015, respectively. The experimental results suggest that the VAT-based CAD scheme can effectively utilize meaningful knowledge from unlabeled data to better classify mammographic breast mass images. In summary, several innovative approaches have been investigated and evaluated in this dissertation to develop ML-based and DL-based CAD schemes for the diagnosis of cervical cancer and breast cancer. The promising results demonstrate the potential of these CAD schemes in assisting radiologists to achieve a more accurate interpretation of radiological images

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant
    • …
    corecore