3 research outputs found

    ์†Œํ˜•๋™๋ฌผ์˜ ๋‡Œ์‹ ๊ฒฝ ์ž๊ทน์„ ์œ„ํ•œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2020. 2. ๊น€์„ฑ์ค€.In this study, a fully implantable neural stimulator that is designed to stimulate the brain in the small animal is described. Electrical stimulation of the small animal is applicable to pre-clinical study, and behavior study for neuroscience research, etc. Especially, behavior study of the freely moving animal is useful to observe the modulation of sensory and motor functions by the stimulation. It involves conditioning animal's movement response through directional neural stimulation on the region of interest. The main technique that enables such applications is the development of an implantable neural stimulator. Implantable neural stimulator is used to modulate the behavior of the animal, while it ensures the free movement of the animals. Therefore, stable operation in vivo and device size are important issues in the design of implantable neural stimulators. Conventional neural stimulators for brain stimulation of small animal are comprised of electrodes implanted in the brain and a pulse generation circuit mounted on the back of the animal. The electrical stimulation generated from the circuit is conveyed to the target region by the electrodes wire-connected with the circuit. The devices are powered by a large battery, and controlled by a microcontroller unit. While it represents a simple approach, it is subject to various potential risks including short operation time, infection at the wound, mechanical failure of the device, and animals being hindered to move naturally, etc. A neural stimulator that is miniaturized, fully implantable, low-powered, and capable of wireless communication is required. In this dissertation, a fully implantable stimulator with remote controllability, compact size, and minimal power consumption is suggested for freely moving animal application. The stimulator consists of modular units of surface-type and depth-type arrays for accessing target brain area, package for accommodating the stimulating electronics all of which are assembled after independent fabrication and implantation using customized flat cables and connectors. The electronics in the package contains ZigBee telemetry for low-power wireless communication, inductive link for recharging lithium battery, and an ASIC that generates biphasic pulse for neural stimulation. A dual-mode power-saving scheme with a duty cycling was applied to minimize the power consumption. All modules were packaged using liquid crystal polymer (LCP) to avoid any chemical reaction after implantation. To evaluate the fabricated stimulator, wireless operation test was conducted. Signal-to-Noise Ratio (SNR) of the ZigBee telemetry were measured, and its communication range and data streaming capacity were tested. The amount of power delivered during the charging session depending on the coil distance was measured. After the evaluation of the device functionality, the stimulator was implanted into rats to train the animals to turn to the left (or right) following a directional cue applied to the barrel cortex. Functionality of the device was also demonstrated in a three-dimensional maze structure, by guiding the rats to navigate better in the maze. Finally, several aspects of the fabricated device were discussed further.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์†Œํ˜• ๋™๋ฌผ์˜ ๋‘๋‡Œ๋ฅผ ์ž๊ทนํ•˜๊ธฐ ์œ„ํ•œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๊ฐ€ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์†Œํ˜• ๋™๋ฌผ์˜ ์ „๊ธฐ์ž๊ทน์€ ์ „์ž„์ƒ ์—ฐ๊ตฌ, ์‹ ๊ฒฝ๊ณผํ•™ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ํ–‰๋™์—ฐ๊ตฌ ๋“ฑ์— ํ™œ์šฉ๋œ๋‹ค. ํŠนํžˆ, ์ž์œ ๋กญ๊ฒŒ ์›€์ง์ด๋Š” ๋™๋ฌผ์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ํ–‰๋™ ์—ฐ๊ตฌ๋Š” ์ž๊ทน์— ์˜ํ•œ ๊ฐ๊ฐ ๋ฐ ์šด๋™ ๊ธฐ๋Šฅ์˜ ์กฐ์ ˆ์„ ๊ด€์ฐฐํ•˜๋Š” ๋ฐ ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋œ๋‹ค. ํ–‰๋™ ์—ฐ๊ตฌ๋Š” ๋‘๋‡Œ์˜ ํŠน์ • ๊ด€์‹ฌ ์˜์—ญ์„ ์ง์ ‘์ ์œผ๋กœ ์ž๊ทนํ•˜์—ฌ ๋™๋ฌผ์˜ ํ–‰๋™๋ฐ˜์‘์„ ์กฐ๊ฑดํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ˆ˜ํ–‰๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ์šฉ์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜๋Š” ํ•ต์‹ฌ๊ธฐ์ˆ ์€ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ์˜ ๊ฐœ๋ฐœ์ด๋‹ค. ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋™๋ฌผ์˜ ์›€์ง์ž„์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ๊ทธ ํ–‰๋™์„ ์กฐ์ ˆํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋™๋ฌผ ๋‚ด์—์„œ์˜ ์•ˆ์ •์ ์ธ ๋™์ž‘๊ณผ ์žฅ์น˜์˜ ํฌ๊ธฐ๊ฐ€ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋ฅผ ์„ค๊ณ„ํ•จ์— ์žˆ์–ด ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋‹ค. ๊ธฐ์กด์˜ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋‘๋‡Œ์— ์ด์‹๋˜๋Š” ์ „๊ทน ๋ถ€๋ถ„๊ณผ, ๋™๋ฌผ์˜ ๋“ฑ ๋ถ€๋ถ„์— ์œ„์น˜ํ•œ ํšŒ๋กœ๋ถ€๋ถ„์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ํšŒ๋กœ์—์„œ ์ƒ์‚ฐ๋œ ์ „๊ธฐ์ž๊ทน์€ ํšŒ๋กœ์™€ ์ „์„ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ ์ „๊ทน์„ ํ†ตํ•ด ๋ชฉํ‘œ ์ง€์ ์œผ๋กœ ์ „๋‹ฌ๋œ๋‹ค. ์žฅ์น˜๋Š” ๋ฐฐํ„ฐ๋ฆฌ์— ์˜ํ•ด ๊ตฌ๋™๋˜๋ฉฐ, ๋‚ด์žฅ๋œ ๋งˆ์ดํฌ๋กœ ์ปจํŠธ๋กค๋Ÿฌ์— ์˜ํ•ด ์ œ์–ด๋œ๋‹ค. ์ด๋Š” ์‰ฝ๊ณ  ๊ฐ„๋‹จํ•œ ์ ‘๊ทผ๋ฐฉ์‹์ด์ง€๋งŒ, ์งง์€ ๋™์ž‘์‹œ๊ฐ„, ์ด์‹๋ถ€์œ„์˜ ๊ฐ์—ผ์ด๋‚˜ ์žฅ์น˜์˜ ๊ธฐ๊ณ„์  ๊ฒฐํ•จ, ๊ทธ๋ฆฌ๊ณ  ๋™๋ฌผ์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„ ๋ฐฉํ•ด ๋“ฑ ์—ฌ๋Ÿฌ ๋ฌธ์ œ์ ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์˜ ๊ฐœ์„ ์„ ์œ„ํ•ด ๋ฌด์„ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•˜๊ณ , ์ €์ „๋ ฅ, ์†Œํ˜•ํ™”๋œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ์˜ ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž์œ ๋กญ๊ฒŒ ์›€์ง์ด๋Š” ๋™๋ฌผ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์›๊ฒฉ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํฌ๊ธฐ๊ฐ€ ์ž‘๊ณ , ์†Œ๋ชจ์ „๋ ฅ์ด ์ตœ์†Œํ™”๋œ ์™„์ „์ด์‹ํ˜• ์ž๊ทน๊ธฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์„ค๊ณ„๋œ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋‘๋‡Œ ์˜์—ญ์— ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š” ํ‘œ๋ฉดํ˜• ์ „๊ทน๊ณผ ํƒ์นจํ˜• ์ „๊ทน, ๊ทธ๋ฆฌ๊ณ  ์ž๊ทน ํŽ„์Šค ์ƒ์„ฑ ํšŒ๋กœ๋ฅผ ํฌํ•จํ•˜๋Š” ํŒจํ‚ค์ง€ ๋“ฑ์˜ ๋ชจ๋“ˆ๋“ค๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ๊ฐ์˜ ๋ชจ๋“ˆ์€ ๋…๋ฆฝ์ ์œผ๋กœ ์ œ์ž‘๋˜์–ด ๋™๋ฌผ์— ์ด์‹๋œ ๋’ค ์ผ€์ด๋ธ”๊ณผ ์ปค๋„ฅํ„ฐ๋กœ ์—ฐ๊ฒฐ๋œ๋‹ค. ํŒจํ‚ค์ง€ ๋‚ด๋ถ€์˜ ํšŒ๋กœ๋Š” ์ €์ „๋ ฅ ๋ฌด์„ ํ†ต์‹ ์„ ์œ„ํ•œ ์ง€๊ทธ๋น„ ํŠธ๋žœ์‹œ๋ฒ„, ๋ฆฌํŠฌ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์žฌ์ถฉ์ „์„ ์œ„ํ•œ ์ธ๋•ํ‹ฐ๋ธŒ ๋งํฌ, ๊ทธ๋ฆฌ๊ณ  ์‹ ๊ฒฝ์ž๊ทน์„ ์œ„ํ•œ ์ด์ƒ์„ฑ ์ž๊ทนํŒŒํ˜•์„ ์ƒ์„ฑํ•˜๋Š” ASIC์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ „๋ ฅ ์ ˆ๊ฐ์„ ์œ„ํ•ด ๋‘ ๊ฐœ์˜ ๋ชจ๋“œ๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ๋ฅ ์„ ์กฐ์ ˆํ•˜๋Š” ๋ฐฉ์‹์ด ์žฅ์น˜์— ์ ์šฉ๋œ๋‹ค. ๋ชจ๋“  ๋ชจ๋“ˆ๋“ค์€ ์ด์‹ ํ›„์˜ ์ƒ๋ฌผํ•™์ , ํ™”ํ•™์  ์•ˆ์ •์„ฑ์„ ์œ„ํ•ด ์•ก์ • ํด๋ฆฌ๋จธ๋กœ ํŒจํ‚ค์ง•๋˜์—ˆ๋‹ค. ์ œ์ž‘๋œ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋ฌด์„  ๋™์ž‘ ํ…Œ์ŠคํŠธ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ง€๊ทธ๋น„ ํ†ต์‹ ์˜ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ๋น„๊ฐ€ ์ธก์ •๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ํ†ต์‹ ์˜ ๋™์ž‘๊ฑฐ๋ฆฌ ๋ฐ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆฌ๋ฐ ์„ฑ๋Šฅ์ด ๊ฒ€์‚ฌ๋˜์—ˆ๊ณ , ์žฅ์น˜์˜ ์ถฉ์ „์ด ์ˆ˜ํ–‰๋  ๋•Œ ์ฝ”์ผ๊ฐ„์˜ ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ผ ์ „์†ก๋˜๋Š” ์ „๋ ฅ์˜ ํฌ๊ธฐ๊ฐ€ ์ธก์ •๋˜์—ˆ๋‹ค. ์žฅ์น˜์˜ ํ‰๊ฐ€ ์ดํ›„, ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ์ฅ์— ์ด์‹๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ๋™๋ฌผ์€ ์ด์‹๋œ ์žฅ์น˜๋ฅผ ์ด์šฉํ•ด ๋ฐฉํ–ฅ ์‹ ํ˜ธ์— ๋”ฐ๋ผ ์ขŒ์šฐ๋กœ ์ด๋™ํ•˜๋„๋ก ํ›ˆ๋ จ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, 3์ฐจ์› ๋ฏธ๋กœ ๊ตฌ์กฐ์—์„œ ์ฅ์˜ ์ด๋™๋ฐฉํ–ฅ์„ ์œ ๋„ํ•˜๋Š” ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์žฅ์น˜์˜ ๊ธฐ๋Šฅ์„ฑ์„ ์ถ”๊ฐ€์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ์ž‘๋œ ์žฅ์น˜์˜ ํŠน์ง•์ด ์—ฌ๋Ÿฌ ์ธก๋ฉด์—์„œ ์‹ฌ์ธต์ ์œผ๋กœ ๋…ผ์˜๋˜์—ˆ๋‹ค.Chapter 1 : Introduction 1 1.1. Neural Interface 2 1.1.1. Concept 2 1.1.2. Major Approaches 3 1.2. Neural Stimulator for Animal Brain Stimulation 5 1.2.1. Concept 5 1.2.2. Neural Stimulator for Freely Moving Small Animal 7 1.3. Suggested Approaches 8 1.3.1. Wireless Communication 8 1.3.2. Power Management 9 1.3.2.1. Wireless Power Transmission 10 1.3.2.2. Energy Harvesting 11 1.3.3. Full implantation 14 1.3.3.1. Polymer Packaging 14 1.3.3.2. Modular Configuration 16 1.4. Objectives of This Dissertation 16 Chapter 2 : Methods 18 2.1. Overview 19 2.1.1. Circuit Description 20 2.1.1.1. Pulse Generator ASIC 21 2.1.1.2. ZigBee Transceiver 23 2.1.1.3. Inductive Link 24 2.1.1.4. Energy Harvester 25 2.1.1.5. Surrounding Circuitries 26 2.1.2. Software Description 27 2.2. Antenna Design 29 2.2.1. RF Antenna 30 2.2.1.1. Design of Monopole Antenna 31 2.2.1.2. FEM Simulation 31 2.2.2. Inductive Link 36 2.2.2.1. Design of Coil Antenna 36 2.2.2.2. FEM Simulation 38 2.3. Device Fabrication 41 2.3.1. Circuit Assembly 41 2.3.2. Packaging 42 2.3.3. Electrode, Feedthrough, Cable, and Connector 43 2.4. Evaluations 45 2.4.1. Wireless Operation Test 46 2.4.1.1. Signal-to-Noise Ratio (SNR) Measurement 46 2.4.1.2. Communication Range Test 47 2.4.1.3. Device Operation Monitoring Test 48 2.4.2. Wireless Power Transmission 49 2.4.3. Electrochemical Measurements In Vitro 50 2.4.4. Animal Testing In Vivo 52 Chapter 3 : Results 57 3.1. Fabricated System 58 3.2. Wireless Operation Test 59 3.2.1. Signal-to-Noise Ratio Measurement 59 3.2.2. Communication Range Test 61 3.2.3. Device Operation Monitoring Test 62 3.3. Wireless Power Transmission 64 3.4. Electrochemical Measurements In Vitro 65 3.5. Animal Testing In Vivo 67 Chapter 4 : Discussion 73 4.1. Comparison with Conventional Devices 74 4.2. Safety of Device Operation 76 4.2.1. Safe Electrical Stimulation 76 4.2.2. Safe Wireless Power Transmission 80 4.3. Potential Applications 84 4.4. Opportunities for Further Improvements 86 4.4.1. Weight and Size 86 4.4.2. Long-Term Reliability 93 Chapter 5 : Conclusion 96 Reference 98 Appendix - Liquid Crystal Polymer (LCP) -Based Spinal Cord Stimulator 107 ๊ตญ๋ฌธ ์ดˆ๋ก 138 ๊ฐ์‚ฌ์˜ ๊ธ€ 140Docto

    A Closed-Loop Bidirectional Brain-Machine Interface System For Freely Behaving Animals

    Get PDF
    A brain-machine interface (BMI) creates an artificial pathway between the brain and the external world. The research and applications of BMI have received enormous attention among the scientific community as well as the public in the past decade. However, most research of BMI relies on experiments with tethered or sedated animals, using rack-mount equipment, which significantly restricts the experimental methods and paradigms. Moreover, most research to date has focused on neural signal recording or decoding in an open-loop method. Although the use of a closed-loop, wireless BMI is critical to the success of an extensive range of neuroscience research, it is an approach yet to be widely used, with the electronics design being one of the major bottlenecks. The key goal of this research is to address the design challenges of a closed-loop, bidirectional BMI by providing innovative solutions from the neuron-electronics interface up to the system level. Circuit design innovations have been proposed in the neural recording front-end, the neural feature extraction module, and the neural stimulator. Practical design issues of the bidirectional neural interface, the closed-loop controller and the overall system integration have been carefully studied and discussed.To the best of our knowledge, this work presents the first reported portable system to provide all required hardware for a closed-loop sensorimotor neural interface, the first wireless sensory encoding experiment conducted in freely swimming animals, and the first bidirectional study of the hippocampal field potentials in freely behaving animals from sedation to sleep. This thesis gives a comprehensive survey of bidirectional BMI designs, reviews the key design trade-offs in neural recorders and stimulators, and summarizes neural features and mechanisms for a successful closed-loop operation. The circuit and system design details are presented with bench testing and animal experimental results. The methods, circuit techniques, system topology, and experimental paradigms proposed in this work can be used in a wide range of relevant neurophysiology research and neuroprosthetic development, especially in experiments using freely behaving animals
    corecore