2,994 research outputs found

    Development of a low actuation voltage RF MEMS switch

    No full text
    This paper reports on the design of a novel ultra low actuation voltage, low loss radio frequency micro-electro-mechanical system (RF MEMS) capacitive shunt switch. The concept of the switch relies on a mechanically unconstrained armature actuated over a coplanar waveguide using electrostatic forces. The minimum actuation voltage of the switch is <2V, with an isolation of 40dB and insertion loss <0.7dB at 78GHz

    A Review of Micro-Contact Physics for Microelectromechanical Systems (MEMS) Metal Contact Switches

    Get PDF
    Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined

    Low Voltage Rf Microelectro-Mechanical Switch Using 0.35 μm MIMOS CMOS Compatible Process

    Get PDF
    Low voltage RF MEMS switch that can be integrated with other circuits is required in the consumer product, industrial and telecommunication sector. Voltage actuation less than 10 V with simple fabrication process is desirable as most of applications need low power system with low fabrication cost. Suis RF MEMS bervoltan rendah dan boleh berintegrasi dengan litar lain sangat diperlukan di dalam produk pengguna, sektor industri dan telekomunikasi. Voltan penggerak kurang daripada 10 V dengan proses fabrikasi yang mudah sangat dikehendaki kerana kebanyakan aplikasi memerlukan sistem kuasa rendah dengan kos fabrikasi yang rendah

    Design and simulation of a low voltage wide band RF MEMS switch

    Full text link
    This paper presents design of an electrostatic wide band shunt capacitive coupling RF MEMS switch with low actuation voltage. The key factors of the RF MEMS switch design are the proper scattering parameters, low actuation voltage, and the cost of the fabrication process. An overview of the recent low actuation voltage RFMEMS switches has been presented. These designs still suffer from the complexity of process, lack of reliability, limitation of frequency band, and process cost. RF characteristics of a shunt RF MEMS switches are specified mostly by coupling capacitor in upstate position of the membrane Cu. This capacitor is in trade-off with actuation voltage. In this work, the capacitor is eliminated by using two short high impedance transmission lines, at the input and output of the switch. The simulation results demonstrate an improvement in the RF characteristic of the switch.<br /

    Collaborative research: Enabling technology for mimo system on mobile devices: Antennas, switches and packaging

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    5-Bit RF MEMS Phase Shifter Development in Ku Band for Phased Array Applications

    Get PDF
    MEMS based devices represent an extremely attractive alternative to MESFET devices for realization of the programmable phase shifters. The stable operation of RF MEMS devices is impacted by the actuation voltage, restoration force and the structural stresses. These can induce severe functional deformities into the device leading to operational problems. These parameters can be optimized by the concept of built-in reliability through design. In the present work, the study of Ku band 5-bit MEMS phase shifter was associated with the switch development. The hybrid design topology of switched and loaded line was adopted for the phase shifter. This topology has been the best trade off among large phase shift, low loss and reduced space requirement in the defined frequency band. This approach requires 18 switches per 5-bit phase shifter and all must work simultaneously in order to achieve the phase shifter fully functional. Hence the study was initiated with switch development keeping the focus on the above mentioned parameters

    An Advanced Real Time Lead RF-MEMS Based Switch Design for AI Applications

    Get PDF
    The artificial intelligence-based MEMS switch designs have been led technology in present micro-electronic applications. The 4G and 5G communication hardware networks have working been through RF-MEMS switches. The earlier MEMS deigns are outdated in terms of functionality and compatibility, so that a realistic RF-MEMS based advanced configurations are compulsory for future electronic applications. In this research work 2 different shunt-capacitive type configurations have been implemented and those are verified on COMSOL Multi-physics toolbox as well as functionality been verified on HFSS software tool. The electromechanical properties of proposed shunt type RF-MEMS switch attained more perfection in functionality compared to past configurations. The implemented switching model has uniform meandering and derives pull-in-voltage of 18.5v along with 1.2xs switching time. The 2nd type shunt RF-MEMS model has been generated pull-in-voltage of 25.5v and isolation loss of 37.20.  The performance metrics like Length 25.34 µm, Width 28.92 µm and Thickness 34.42 µm had been improved compared to previous models. The deigned shunt-capacitive type RF-MEMS models are most prominent in operation and offering advanced microelectronics applications

    An Advanced Real Time Lead RF-MEMS Based Switch Design for AI Applications

    Get PDF
    The artificial intelligence-based MEMS switch designs have been led technology in present micro-electronic applications. The 4G and 5G communication hardware networks have working been through RF-MEMS switches. The earlier MEMS deigns are outdated in terms of functionality and compatibility, so that a realistic RF-MEMS based advanced configurations are compulsory for future electronic applications. In this research work 2 different shunt-capacitive type configurations have been implemented and those are verified on COMSOL Multi-physics toolbox as well as functionality been verified on HFSS software tool. The electromechanical properties of proposed shunt type RF-MEMS switch attained more perfection in functionality compared to past configurations. The implemented switching model has uniform meandering and derives pull-in-voltage of 18.5v along with 1.2xs switching time. The 2nd type shunt RF-MEMS model has been generated pull-in-voltage of 25.5v and isolation loss of 37.20.  The performance metrics like Length 25.34 µm, Width 28.92 µm and Thickness 34.42 µm had been improved compared to previous models. The deigned shunt-capacitive type RF-MEMS models are most prominent in operation and offering advanced microelectronics applications

    Performance Exploration of Uncertain RF MEMS Switch Design with Uniform Meanders

    Get PDF
    The design of RF-MEMS Switch is useful for future artificial intelligence applications. Radio detection and range estimation has been employed with RF MEMS technology. Attenuators, limiters, phase shifters, T/R switches, and adjustable matching networks are components of RF MEMS. The proposed RF MEMS technology has been introduced in T/R modules, lenses, reflect arrays, sub arrays and switching beam formers. The uncertain RF MEMS switches have been faced many issues like switching and voltage alterations. This study aims in the direction of design, simulation, model along with RF MEMS switching analysis including consistent curving or meandering. The proposed RF MEMS Switch is a flexure form of the Meanders that attain minimal power in nominal voltage. Moreover, this research work highlights the materials assortment in case of beam along with signal-based dielectric. The performance analysis is demonstrated for various materials that have been utilized in the design purpose. Further, better isolation is accomplished at the range of -31dB necessary regarding 8.06V pull-in voltage through a spring constant valued at 3.588N/m, switching capacitance analysis has been found to be 103 fF at ON state and 7.03pF at OFF state and the proposed switch is optimized to work at 38GHz. The designed RF MEMS switch is giving 30% voltage improvement; switching frequency is improved by 21.32% had been attained, which are outperformance the methodology and compete with present technology

    RF-MEMS switches with AlN dielectric and their applications

    Get PDF
    This paper reports on the potential of RF-MEMS technology based on aluminum nitride capacitive dielectric and nickel-suspended membranes to provide RF circuit functions in reconfigurable front-end radios. The RF performance of capacitive switches, distributed MEMS transmission lines (DMTLs) phase shifters for beam steering and tunable filters, including center frequency and bandwidth tuning of bandpass and band-stop filters are presented. Detailed characterization based on S-parameter data demonstrates very promising figures of merit of all fabricated demonstrators from 5 to 40GH
    corecore