3 research outputs found

    A Weigh-in-Motion Characterization Algorithm for Smart Pavements Based on Conductive Cementitious Materials

    Get PDF
    Smart materials are promising technologies for reducing the instrumentation cost required to continuously monitor road infrastructures, by transforming roadways into multifunctional elements capable of self-sensing. This study investigates a novel algorithm empowering smart pavements with weigh-in-motion (WIM) characterization capabilities. The application domain of interest is a cementitious-based smart pavement installed on a bridge over separate sections. Each section transduces axial strain provoked by the passage of a vehicle into a measurable change in electrical resistance arising from the piezoresistive effect of the smart material. The WIM characterization algorithm is as follows. First, basis signals from axles are generated from a finite element model of the structure equipped with the smart pavement and subjected to given vehicle loads. Second, the measured signal is matched by finding the number and weights of appropriate basis signals that would minimize the error between the numerical and measured signals, yielding information on the vehicle’s number of axles and weight per axle, therefore enabling vehicle classification capabilities. Third, the temporal correlation of the measured signals are compared across smart pavement sections to determine the vehicle weight. The proposed algorithm is validated numerically using three types of trucks defined by the Eurocodes. Results demonstrate the capability of the algorithm at conducting WIM characterization, even when two different trucks are driving in different directions across the same pavement sections. Then, a noise study is conducted, and the results conclude that a given smart pavement section operating with less than 5% noise on measurements could yield good WIM characterization results

    Internet-of-vehicles network for COâ‚‚ emission estimation and reinforcement learning-based emission reduction

    Get PDF
    The escalating impact of vehicular Carbon Dioxide (CO2) emissions on air pollution, global warming, and climate change necessitates innovative solutions. This paper proposes a comprehensive Internet-of-Vehicles (IoV) network for real-time CO2 emissions estimation and reduction. We implemented and tested an on-board device that estimates the vehicle’s emissions and transmits the data to the network. The estimated CO2 emissions values are close to the standard emissions values of petrol and diesel vehicles, accounting for expected discrepancies due to vehicles’ age and loading. The network uses the aggregate emissions readings to inform the Reinforcement Learning (RL) algorithm, enabling the prediction of optimal speed limits to minimize vehicular emissions. The results demonstrate that employing the RL algorithm can achieve an average CO2 emissions reduction of 11 kg/h to 150 kg/h

    Real-Time Vehicle Emission Estimation Using Traffic Data

    Get PDF
    The current state of climate change should be addressed by all sectors that contribute to it. One of the major contributors is the transportation sector, which generates a quarter of greenhouse gas emissions in North America. Most of these transportation related emissions are from road vehicles; as result, how to manage and control traffic or vehicular emissions is therefore becoming a major concern for the governments, the public and the transportation authorities. One of the key requirements to emission management and control is the ability to quantify the magnitude of emissions by traffic of an existing or future network under specific road plans, designs and traffic management schemes. Unfortunately, vehicular traffic emissions are difficult to quantify or predict, which has led a significant number of efforts over the past decades to address this challenge. Three general methods have been proposed in literature. The first method is for determining the traffic emissions of an existing road network with the idea of measuring the tail-pipe emissions of individual vehicles directly. This approach, while most accurate, is costly and difficult to scale as it would require all vehicles being equipped with tail-pipe emission sensors. The second approach is applying ambient pollutant sensors to measure the emissions generated by the traffic near the sensors. This method is only approximate as the vehicle-generated emissions can easily be confounded by other nearby emitters and weather and environmental conditions. Note that both of these methods are measurement-based and can only be used to evaluate the existing conditions (e.g., after a traffic project is implemented), which means that it cannot be used for evaluating alternative transportation projects at the planning stage. The last method is model-based with the idea of developing models that can be used to estimate traffic emissions. The emission models in this method link the amount of emissions being generated by a group of vehicles to their operations details as well as other influencing factors such as weather, fuel and road geometry. This last method is the most scalable, both spatially and temporally, and also most flexible as it can meet the needs of both monitoring (using field data) and prediction. Typically, traffic emissions are modelled on a macroscopic scale based on the distance travelled by vehicles and their average speeds. However, for traffic management applications, a model of higher granularity would be preferred so that impacts of different traffic control schemes can be captured. Furthermore, recent advances in vehicle detection technology has significantly increased the spatiotemporal resolutions of traffic data. For example, video-based vehicle detection can provide more details about vehicle movements and vehicle types than previous methods like inductive loop detection. Using such detection data, the vehicle movements, referred to as trajectories, can be determined on a second-by-second basis. These vehicle trajectories can then be used to estimate the emissions produced by the vehicles. In this research, we have proposed a new approach that can be used to estimate traffic generated emissions in real time using high resolution traffic data. The essential component of the proposed emission estimation method is the process to reconstruct vehicle trajectories based on available data and some assumptions on the expected vehicle motions including cruising, acceleration and deceleration, and car-following. The reconstructed trajectories containing instantaneous speed and acceleration data are then used to estimate emissions using the MOVES emission simulator. Furthermore, a simplified rate-based module was developed to replace the MOVES software for direct emission calculation, leading to significant improvement in the computational efficiency of the proposed method. The proposed method was tested in a simulated environment using the well-known traffic simulator - Vissim. In the Vissim model, the traffic activities, signal timing, and vehicle detection were simulated and both the original vehicle trajectories and detection data recorded. To evaluate the proposed method, two sets of emission estimates are compared: the “ground truth” set of estimates comes from the originally simulated vehicle trajectories, and the set from trajectories reconstructed using the detection data. Results show that the performance of the proposed method depends on many factors, such as traffic volumes, the placement of detectors, and which greenhouse gas is being estimated. Sensitivity analyses were performed to see whether the proposed method is sufficiently sensitive to the impacts of traffic control schemes. The results from the sensitivity analyses indicate that the proposed method can capture impacts of signal timing changes and signal coordination but is insufficiently sensitive to speed limit changes. Further research is recommended to validate the proposed method using field studies. Another recommendation, which falls outside of this area of research, would be to investigate the feasibility of equipping vehicles with devices that can record their instantaneous fuel consumption and location data. With this information, traffic controllers would be better informed for emission estimation than they would be with only detection data
    corecore