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Abstract 

The current state of climate change should be addressed by all sectors that contribute to it. One of the 

major contributors is the transportation sector, which generates a quarter of greenhouse gas emissions 

in North America (Environment and Climate Change Canada, 2018; U.S. EPA, 2018). Most of these 

transportation related emissions are from road vehicles; as result, how to manage and control traffic or 

vehicular emissions is therefore becoming a major concern for the governments, the public and the 

transportation authorities.   

One of the key requirements to emission management and control is the ability to quantify the 

magnitude of emissions by traffic of an existing or future network under specific road plans, designs and 

traffic management schemes.  Unfortunately, vehicular traffic emissions are difficult to quantify or 

predict, which has led a significant number of efforts over the past decades to address this challenge.  

Three general methods have been proposed in literature.  The first method is for determining the traffic 

emissions of an existing road network with the idea of measuring the tail-pipe emissions of individual 

vehicles directly.  This approach, while most accurate, is costly and difficult to scale as it would require 

all vehicles being equipped with tail-pipe emission sensors. The second approach is applying ambient 

pollutant sensors to measure the emissions generated by the traffic near the sensors.  This method is 

only approximate as the vehicle-generated emissions can easily be confounded by other nearby emitters 

and weather and environmental conditions.  Note that both of these methods are measurement-based 

and can only be used to evaluate the existing conditions (e.g., after a traffic project is implemented), 

which means that it cannot be used for evaluating alternative transportation projects at the planning 

stage.   The last method is model-based with the idea of developing models that can be used to estimate 

traffic emissions.  The emission models in this method link the amount of emissions being generated by 

a group of vehicles to their operations details as well as other influencing factors such as weather, fuel 

and road geometry.  This last method is the most scalable, both spatially and temporally, and also most 

flexible as it can meet the needs of both monitoring (using field data) and prediction.   

Typically, traffic emissions are modelled on a macroscopic scale based on the distance travelled by 

vehicles and their average speeds. However, for traffic management applications, a model of higher 

granularity would be preferred so that impacts of different traffic control schemes can be captured. 

Furthermore, recent advances in vehicle detection technology has significantly increased the 

spatiotemporal resolutions of traffic data. For example, video-based vehicle detection can provide more 

details about vehicle movements and vehicle types than previous methods like inductive loop detection. 

Using such detection data, the vehicle movements, referred to as trajectories, can be determined on a 

second-by-second basis. These vehicle trajectories can then be used to estimate the emissions produced 

by the vehicles.   

In this research, we have proposed a new approach that can be used to estimate traffic generated 

emissions in real time using high resolution traffic data. The essential component of the proposed 

emission estimation method is the process to reconstruct vehicle trajectories based on available data 

and some assumptions on the expected vehicle motions including cruising, acceleration and 
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deceleration, and car-following.  The reconstructed trajectories containing instantaneous speed and 

acceleration data are then used to estimate emissions using the MOVES emission simulator. 

Furthermore, a simplified rate-based module was developed to replace the MOVES software for direct 

emission calculation, leading to significant improvement in the computational efficiency of the proposed 

method.  

The proposed method was tested in a simulated environment using the well-known traffic simulator - 

Vissim. In the Vissim model, the traffic activities, signal timing, and vehicle detection were simulated and 

both the original vehicle trajectories and detection data recorded. To evaluate the proposed method, 

two sets of emission estimates are compared: the “ground truth” set of estimates comes from the 

originally simulated vehicle trajectories, and the set from trajectories reconstructed using the detection 

data.  

Results show that the performance of the proposed method depends on many factors, such as traffic 

volumes, the placement of detectors, and which greenhouse gas is being estimated. Sensitivity analyses 

were performed to see whether the proposed method is sufficiently sensitive to the impacts of traffic 

control schemes. The results from the sensitivity analyses indicate that the proposed method can 

capture impacts of signal timing changes and signal coordination but is insufficiently sensitive to speed 

limit changes.  

Further research is recommended to validate the proposed method using field studies. Another 

recommendation, which falls outside of this area of research, would be to investigate the feasibility of 

equipping vehicles with devices that can record their instantaneous fuel consumption and location data. 

With this information, traffic controllers would be better informed for emission estimation than they 

would be with only detection data.  
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Chapter 1 Introduction 

As the concerns of climate grows, new methods of reducing greenhouse gas production are sought 

after. One of the major anthropogenic sources of greenhouse gasses is the transportation sector. In the 

transportation sector, vehicles contribute to a significant amount of all man-made emissions 

(Environment and Climate Change Canada, 2018; U.S. EPA, 2018). Attempts have been made from 

various fronts to reduce vehicle emissions as their production increases; however, it remains a challenge 

to quantify emissions in many situations. Quantifying emissions is particularly important, because what 

cannot be measured cannot be managed.  

The quantification of vehicle emissions presents a myriad of challenges. From direct measurements to 

modelling practices, great costs and efforts must be undertaken. Often, trade-offs between cost and 

accuracy are made. These trade-offs require knowing what is being sacrificed to make the method 

feasible. When the trade-offs are known, one can decide the choice of method to use and the 

parameters that govern it. A commonly used method of quantification is modelling. Emissions can be 

modelled based on vehicle activities at various levels of detail. The modelling methods are based on past 

research in the relationships between vehicle operations and emission production.  

As various transportation related analyses are taking emissions into account, from planning and design 

to technology, there are improvements to be made and new opportunities to be taken advantage of. 

This thesis explores using emission modelling to quantify emissions in real-time based on traffic data. 

The purpose of a real-time emission monitoring method is to enable a way to incorporate emissions into 

the set of performance metrics used in traffic management. For example, in signal control optimization, 

traffic controllers may measure vehicle throughput, travel times, or queue lengths to evaluate their 

traffic control strategies. Emissions are often considered in many transportation management aspects; 

however, they are rarely considered in microscopic control scenarios due to the difficulties of 

quantifying emission production at that level of detail.  

Due to current technologies, more complex traffic flow-related performance metrics can be measured in 

real-time in the traffic management industry, allowing traffic control schemes to adapt more 

intelligently to optimize for traffic flow. The issue of reducing emissions should not be left behind in this 

progress. As real-time traffic control optimization is enhanced for improving flow, emission production 

should also be considered as a performance metric. 

To address this problem, a method for monitoring emissions in real-time should be developed. Since 

traffic data is collected for other performance metrics, the same data can be used to model emissions. If 

emissions can be monitored alongside flow metrics, then traffic control schemes can be optimized for a 

more wholistic set of objectives that reflect current goals in the transportation sector.  
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1.1 Motivation 

The research presented in this thesis is motivated by the current consensus on climate trends and 

practices in traffic management. One of the pressing issues looming on the horizon is the persistent 

climate change that has been picking up momentum since the beginning of the industrial revolution. 

While the global temperature has fluctuated immensely in the past, its current rate of change is 

unprecedented, and alarming compared to the last few millennia. It is well-established that climate 

change is largely due to increasing levels of GHG’s in the atmosphere, which is a result of fossil fuel 

combustion. In Canada and the US, the transportation sector generates 24% and 28% of greenhouse gas 

emissions respectively, a substantial amount of which is generated by road vehicles (Environment and 

Climate Change Canada, 2018; U.S. EPA, 2018). As climate change becomes a more pressing issue, traffic 

control strategies need to adapt to consider its role in climate change. 

In addition to increasing global warming, vehicle emissions also degrade air quality. In urban areas, as 

populations and, consequently, transportation activities become denser, air quality is becoming a 

growing concern. The degradation of air quality due to traffic activities have been observed to impact 

the health of residents nearby (K. Zhang & Batterman, 2014). The effects could include increased 

incidence and severity of respiratory and cardiovascular ailments (Laumbach & Kipen, 2012). It has been 

shown that measures taken to reduce emission have been able to make a difference in health effects. 

For example, when  efforts were taken to improve air quality during the Beijing Olympics, the average 

number of outpatient visits for asthma was almost halved (Li, Wang, Kan, Xu, & Chen, 2010). Besides 

health effects, emissions also reduce visibility and sun penetration, which can cause ecological and 

aesthetic issues.  

Even if transportation modes switch to cleaner fuels and eliminate emissions, there is still the concern of 

energy consumption, which is highly correlated with emission production. It would still be beneficial to 

be able to monitor energy consumption, as the energy must be produced somewhere. Energy 

production, transmission, and storage have their own costs and externalities that contribute to 

sustainability problems. 

1.2 Background 

Emission reduction strategies are employed in several different fields ranging across user behaviour, 

vehicle technology, infrastructure, and control systems. They have varying levels of effectiveness, often 

depending on how they are implemented. Some examples of emission reduction strategies in the field 

of traffic controls include speed limit controls on freeways (European Environment Agency, 2013) and 

designated Low Emission Zones (European Union, 2019). When it comes to traffic controls, one of the 

challenges is that it is often a dynamic problem. Measures implemented in traffic controls tend to be 

analysed over a much shorter time frame than those in the areas of economic incentives, regulations, 

technology, and infrastructure, because the turn-around time is shorter for the cause-and-effect cycle to 

take place. In traffic controls, the effects can be immediate, and the system can change immediately, 
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meaning that the effects and changes must be known quickly in order to inform further controls. 

Furthermore, the effects of traffic controls can be subtle and would require relatively microscopic 

emission quantification methods to be captured. 

Emission quantification is a widely studied field with a diverse set of applications. Areas of applications 

include testing, alternatives analysis, and real-world monitoring. Typically, testing is performed with 

equipment that directly measure emissions, such as Portable Emission Measurement Systems (PEMS) or 

closed facilities with chassis dynamometers (Franco et al., 2013a; Rexeis, Hausberger, Kühlwein, & Luz, 

2017; Wu et al., 2015), as described in Sections 2.1.1 and 2.1.2 respectively. Alternatives analyses tend 

to be performed using simulation models in conjunction with emission models to allow user-defined 

hypothetical scenarios to be analysed (So, Motamedidehkordi, Wu, Busch, & Choi, 2017). For real-world 

monitoring applications, both direct measurements and simulation modelling are costly to scale up; 

therefore, data-driven approaches are usually preferred. Using collected data, highly generalizable 

models can be used to obtain emission estimates. This approach was used in several studies (Csikós & 

Varga, 2012; Hang Liu, Tok, & Ritchie, 2011; Park, Ahn, Rakha, & Lee, 2015; Shan et al., 2018; Yao et al., 

2012). These methods depend on data sources such as inductive loops, GPS probes, and video cameras. 

They vary in terms of sensitivity and ability to capture effects of traffic controls. Given the recent 

advances in data collection and communications technology, methods that use data for modelling can 

be implemented in real-time if they are sufficiently quick to compute.   

1.3 Problem Statement 

While many strategies exist for managing vehicle emissions, there are still areas where emissions are not 

accounted for. One such area is the microscopic and dynamic controls of traffic. In microscopic traffic 

management, performance metrics such as levels of service, queue lengths, and travel times are often 

monitored to evaluate signal controls (U.S. Department of Transportation, 2017). Recent technologies 

allow these metrics to be monitored in real-time so that traffic controls can be adjusted accordingly, 

such as in adaptive signal control systems like the Split Cycle Offset Optimisation Technique (SCOOT) 

(Bretherton, Wood, & Raha, 2007). However, it is difficult to incorporate emissions into these 

performance metrics. To bring emissions into the set of performance metrics used for traffic control, 

some challenges must be tackled.  

Some of the challenges are due to the dynamic nature of traffic systems and the diversity of scenarios 

that such systems can experience. The focus is on urban traffic, which has complex behaviours and is 

heavily influenced by controls. As this is a traffic control approach rather than a long-term planning and 

policy approach, the method must be able to generate results quickly. Furthermore, it should also be 

easily generalizable.  

The practice of traffic management at a microscopic level involves activities such as signal control 

programming, traffic signage and variable speed limits. As such, the method developed should be 

sensitive enough to the dynamics of traffic such that the impacts of changes in these types of controls 

can be accounted for. These changes may include signal timing or speed limit changes.  
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An obvious approach to emission monitoring may be to measure them directly. However, direct 

methods, as explained in Sections 2.1.1 and 2.1.2, are difficult to apply to large-scale, microscopic 

applications. They tend to be reserved for more macroscopic applications (Song, Yao, Zuo, & Lang, 2013) 

or for testing only (Franco et al., 2013a; Hausberger, Rexeis, Zallinger, & Luz, 2009). On the contrary, 

simulation-based modelling methods require little equipment and are highly scalable. They are 

extensively used for emission quantification at different scale levels or as a basis of comparison for 

developing other emission modelling methods (Csikós & Varga, 2012; Park et al., 2015; Shan et al., 

2018), as briefly described in Section 2.1.5. The problem with simulation-based emission modelling is 

that simulation models are location specific, making this method difficult to generalize. Thus, a data-

driven approach, as described in Section 2.1.4, would be more suitable for real-world emission 

monitoring. A data-driven approach would be applicable where ever data can be obtained without 

requiring more simulation models to be built.  

The previously mentioned SCOOT technique offers an existing data-driven emission monitoring 

approach for traffic control management. SCOOT can incorporate emissions as a performance metric 

using an average speed emission model (Grote, Williams, Preston, & Kemp, 2016). While average speed 

models are commonly used, they tend to be less capable of capturing the effects of different congested 

situations (Lejri, Can, Schiper, & Leclercq, 2018). There are many existing emission modelling methods 

that are highly sensitive to vehicular activities, such as software packages like MOVES (U.S. 

Environmental Protection Agency, 2014) or SIDRA (Akçelik, Smit, & Besley, 2014). These models are 

sensitive and suitable for microscopic emission modelling. However, microscopic models require lengthy 

computation or detailed input data, such as simulation outputs, and are difficult to implement at a large 

scale in real-time in their original state (Lejri et al., 2018). To monitor emissions as part of a traffic 

network management scheme, the method should be operable in real-time to allow traffic controls to 

react to the dynamic changes in traffic. Models that are computationally simpler are more suitable for 

real-time and large scale emission estimation, such as those based on the European Handbook of 

Emission Factors (Mann, 2016; Ntziachristos et al., 2018; Rexeis et al., 2017). However, these methods 

are based on highly contextual empirical research, making them difficult to generalize. Furthermore, 

they are less sensitive and microscopic than the former methods. Even if a more sensitive emission 

model were applied, the SCOOT system may not be appropriate, since SCOOT uses general flow and 

occupancy information from loop detector data, which does not provide sufficiently granular vehicle 

activity data. Another shortcoming is that because vehicle types are not detected by SCOOT, constant 

vehicle type proportions are used (Bretherton et al., 2007). 

New opportunities have been created by the advances in traffic monitoring technology that can record 

more detailed information than before. For example, computer vision applied to traffic cameras allow 

vehicle motions to be tracked across an image plane and can provide presence detection at specified 

locations (Kanhere & Birchfield, 2010). In additional, vehicle types can be roughly classified (Sokemi 

Rene Emmanuel Datondji, Dupuis, Subirats, & Vasseur, 2016). This introduces a significant improvement 

to the traditional methods of detection by inductive loops. This opportunity for improved emission 

monitoring has already been explored by Yao et al. (2012), who used computer vision to detect travel 

speeds on a freeway segment. Urban intersections, however, exhibit more complex vehicular activities 

due to stop-and-go traffic. The ability to track each individual vehicle over space and time while knowing 
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its vehicle type present opportunities for detailed data-driven traffic and emission modelling. These 

opportunities can be taken advantage of by synthesizing existing knowledge in the practice of emission 

modelling and traffic management to create methods that are simultaneously sensitive, generalizable, 

automated, and efficient.   

1.4 Research Objectives 

The primary objective of this thesis research is to develop a method that can be used to estimate vehicle 

emissions in real-time for evaluating traffic management and control schemes. This method must be 

sensitive to traffic activities to capture changes in the control strategies. The particular application 

scenario is quantification of traffic emissions at urban signalized intersections with varying degrees of 

traffic volumes, assuming certain types of traffic and signal timing data are available. Such data can be 

made available through the detection and communications technologies used in traffic monitoring 

today.  

To develop a method, a review of emission modelling techniques was conducted. The review covered an 

understanding of emission generation models that are used to estimate emissions. It also involved 

works related to the research objectives stated, such enabling real-time estimations and applications 

geared toward microscopic traffic movements. Furthermore, the current state-of-the-art in traffic 

detection was considered, since the developed method would rely on traffic data.  

The developed method must be evaluated in terms of its effectiveness under different traffic conditions. 

It must also be evaluated over changes in controls to see if effects can be captured. To evaluate the 

method, it needs to be compared to a reasonable level of ground truth such as those from validated 

traffic and emission simulation models.   

1.5 Thesis Structure 

First, Chapter 1 sets the context for the research, including 1.1) the motivation for vehicle emission 

management due to environmental concerns; 1.2) background on the precedents in this area of 

research;  1.3) a problem statement made to address the needs to be filled by the research in this thesis; 

and 1.4) a set of research objectives. 

Chapter 2 provides a comprehensive review of the relevant literature related to this research. It begins 

by exploring, at a broad level, different types of emissions quantification methods that have been used 

(2.1), ranging from measuring methods to modelling methods (2.1.1 to 2.1.5). Then, focus is placed on 

the modelling methods (2.2), including an overview of the physics of emission production(2.2.1), a 

review of commonly used emission models and software in practice (2.2.2), and methods developed to 

model emissions in real-time (2.3). The literature review closes with a section on various traffic 

management strategies that have been studied or implemented (2.3). 
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The research methodology in Chapter 3 describes in detail how the research was conducted. It begins by 

describing the Vissim model that was built as a test-bed for the research activities (3.1). The Vissim 

model is described in terms of the data used to build, calibrate, and validate the model (3.1.1 to 3.1.2). 

Then, descriptions are provided for detector simulation (3.1.3) and alternative models that were created 

for sensitivity analyses (3.1.4). Following the Vissim model descriptions, the methodology for 

reconstruction vehicle trajectories is explained (3.2). The primary and the alternative simplified 

trajectory reconstruction methods are formulated in sections 3.2.1 and 3.2.2. Finally, the emission 

estimation process is described (3.3) by explaining how inputs for the MOVES model are generated from 

the data and from the trajectory reconstruction process (3.3.1) and how the real-time emissions 

estimation method is set up and executed (3.3.2).  

Results presented in Chapter 4 include examples of the reconstructed trajectories (4.1), emission rates 

for real-time emission estimation (4.2), and finally evaluations for the proposed method (4.3 and 4.4). 

Results for the primary trajectory reconstruction method (4.3) include performance evaluations of the 

method in field conditionals (4.3.1). The effects of advance detector locations, estimate aggregation, 

truck penetration, signal timing, signal coordination, and speed limits are explored in sections (4.3.2 to 

4.3.7 respectively).  

Chapter 5 summarizes the main findings of the research (5.1) and discusses related topics (5.2 to 5.3). 

The findings cover the general adequacy of the proposed emission monitoring method (5.1.1), the 

patterns observed in the effects of different traffic control schemes (5.1.2), and how the primary and 

simplified methods compare (5.1.3). After the findings, the applications and limitations of the proposed 

method is discussed (5.2) and recommendations for future research are made in (5.3). The 

recommendations include further work that can be done to improve this method (5.3.1), validations 

using field studies (5.3.2), and possible opportunities for emission monitoring outside of the immediate 

area of research (5.3.3). 
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Chapter 2 Literature Review 

The literature review focuses on emission modelling methods and examples of emission monitoring 

frameworks used in the literature, especially those that use traffic data to perform estimations in real-

time. Additional relevant material, such as the physics of emission production and a brief overview of 

various emission quantification methods, are also included. This section ends with considerations of 

traffic management strategies and technologies that relate to this research. 

2.1 Emission Quantification Methods Overview 

Several types of approaches have been used for quantifying vehicle emissions, from direct 

measurements to modelling techniques. Each method has advantages and disadvantages which are 

summarized in Table 1, from directness on the left to versatility on the right. In general, methods that 

are direct and accurate tend to require costly measures such as equipment and are difficult to scale up 

when deployed independently. In contrast, methods that are easier to scale up on a spatial, temporal, or 

penetrative scale normally require modelling efforts, requiring certain assumptions on how individual 

system components operate. These assumptions may result in estimation errors, which could become a 

major concern depending on the purpose of the application. Since this research is focused on 

quantifying emissions for traffic management purposes such as signal programming, it is important for 

the method to be highly sensitive to traffic dynamics. It would also be ideal if the method could 

generate results quickly. Thus, the methods of emission quantification are compared in terms of how 

fast they can operate on a continuous basis while performing highly detailed estimations.  The following 

section provides a detailed discussion on each of these methods. 
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Table 1: Emission Quantification Methods Comparison 

Comparison of Emission Monitoring Methods with Regard to Traffic Control Management 
Method Direct 

Measurement 

Indirect Measurement 

+ Modelling 

Modelling based on Field 

Traffic Data 

Modelling based on 

Traffic Simulations 

Examples Portable Emission 

Measurement 

Systems 

Chassis 

Dynamometer 

Facilities 

Stationary air quality 

sensors + dispersion 

modelling 

Model traffic flow using 

traffic data, then 

estimate emissions with 

traffic model 

Use simulated traffic 

behaviour for 

emission estimation 

Pros • Accurate 

• Little additional 

data required 

• Provides direct 

measurement of air 

quality 

• Constant, location-

specific monitoring 

• No equipment 

required where traffic 

data is available 

• Minimal modelling 

efforts required for 

additional sites of 

application 

• Versatile 

• No equipment 

required 

• High level of 

detail attained 

Cons • Equipment or 

closed facility 

required 

• Costly to scale 

up by volume, 

spatial 

coverage, and 

time 

• Equipment required 

on site 

• External factors 

must be accounted 

for to find the 

direct impact of 

traffic controls on 

the emissions 

• Modelling traffic 

introduces sources of 

error. 

• Additional data 

required (e.g. road, 

weather, vehicle 

types, etc.) 

• Simulations can 

be time-

demanding 

• A model must be 

created for every 

site of application 

• Additional data 

also required. 

 

2.1.1 Direct Measurement in Closed Facilities  

The most direct way to quantify emission is to measure the emissions from the tail-pipe of a vehicle 

when it is operated in a closed environment where a chassis dynamometer is used to simulate the loads 

of vehicle operation through roller acting on the driving tires, as shown in Figure 1. This is a method 

used to perform emissions testing to develop emission factors (Franco et al., 2013b). Emission factors 

are emission production rates that indicate how much emissions are generated under what type of 

driving activities. With direct measurements under controlled conditions, the emission quantities are 
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very accurate. However, due to the testing process and facilities required, this method is expensive and 

arduous. Thus, it is limited to occasional testing for research or regulatory purposes rather than 

continuous monitoring. Furthermore, it is not suitable for on-road measurements, as it must be 

performed in closed facilities. 

 

Figure 1: Chassis Dynamometer Emission Testing Framework (Franco et al., 2013b) 

2.1.2 Direct Mobile Measurement 

Another direct quantification method is to measure emissions from the tail-pipe of a vehicle while it is 

on the road. This method requires the installation of a Portable Emission Measurement System (PEMS) 

on the vehicle, as illustrated in Figure 2. Like the previous method, this method provides accurate results 

through direct measurement under real on-road traffic environment. PEMS data have been used for 

emission modelling at the mesoscopic level by Song et al. (2013) and Samaranayake et al. (2014). While 

this method is more versatile than closed facility testing, it is still difficult to scale up, as the equipment 

is costly, and it is impractical to install it on a large number of vehicles. Typically, it is installed on probe 

vehicles, and further extrapolation is necessarily to model the general emission activity of all vehicles in 

relation to the probe vehicle activities. This method is most applicable for mesoscopic or macroscopic 

emission monitoring. Challenges would arise from using this method for microscopic monitoring if the 

penetration of probe vehicles with PEMS installed is insufficient to represent the general traffic. As with 

closed facility testing, this method is mostly used for serving the research purpose of developing 

emission factors.  



10 
 

 

Figure 2: Portable Emission Measurement System (PEMS) (Sensors Inc., 2016) 

2.1.3 Indirect Stationary Measurement 

Another measurement technique used involves measuring air pollutant through stationary roadside 

devices. These devices are most suitable for air quality monitoring. However, for traffic emission 

monitoring, more steps are required to produce adequate results. As soon as emissions leave the tail-

pipe of a vehicle, they begin to disperse. As result, a dispersion model is required to estimate the 

amount of emissions from vehicles based on measurements at roadside equipment. In relating the 

measured air pollutants to the traffic activities, the dispersion model must account for the external 

factors of weather and environment as well as other possible non-traffic emitters. For example, 

Amirjamshidi et al. (2013) used roadside measurements were to infer vehicle emissions. Stationary 

measurements can also be used in unique, semi-closed conditions such as tunnels (Smit, Ntziachristos, & 

Boulter, 2010), where dispersion modelling requirements are different. 

An advantage of this method is that sensors are fixed at the location of concern to provide constant 

monitoring, regardless of the vehicle activities. Furthermore, it can also serve as an air quality monitor. 

A disadvantage would be the requirement of expensive equipment that made this method difficult to 

scale up. A further disadvantage is the additional data and modelling required to account for external, 

environmental factors affecting the emission measurement.  

2.1.4 Emission Modelling Using Traffic Data 

A significant number of past efforts have devoted to developing models to estimate emissions using 

various types of traffic data, such as loop detector data, GPS probe data, video detection, and 

Bluetooth/Wi-Fi detector data. Depending on the nature of the traffic data, traffic modelling efforts may 
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be required to obtain sufficient traffic activity information as required by the underlying emission 

estimation process.  

For example, Hang Liu, Tok, and Ritchie (2011) developed a system to estimate vehicle emissions using 

inductive loop detector data. The detectors use inductive vehicle signature technology to classify vehicle 

types. The vehicle speed input consisted of average speeds for each vehicle class as measured by the 

loop detectors. Additional information such as temperature and humidity were provided by local 

weather stations.  The traffic activity data are then input into the MOVES model for emission estimation. 

In a similar example, Csikós and Varga (2012) also developed a method to estimate emissions using loop 

detector data in real time. The research was conducted using Vissim simulations. The real-time 

emissions modelling was based on COPERT IV, which provides emission factors for various vehicle 

classes pertaining to average speeds travelled over a segment. This method was also aimed at a 

macroscopic spatial level, performed on a simulation model of a freeway. While the developed method 

operated at a macroscopic level, it was validated through microscopic modelling. The microscopic 

emission estimates were generated using the Vissim add-on, EnViVer (PTV Vissim, n.d.), which is based 

on Versit+, an emission modelling approach and dataset from PEMS testing (Ligterink, 2016). This model 

is a distance-based model where emission factors specific to pollutants, vehicle classes, and speed-time 

profiles are applied to lengths of road segments corresponding to the speed-time profile, multiplied by 

traffic volumes of the vehicle class on that segment (Linton, Grant-Muller, & Gale, 2015).  

Shan et al. (2018) developed a method to estimate emissions using GPS probe data. The method aimed 

to quantify emissions at a microscopic level, which required detailed vehicle trajectories. However, GPS 

data is sparse, so the trajectories must be reconstructed from the known data points. The trajectories 

were reconstructed into four driving modes – cruise, acceleration, deceleration, idling – with the help of 

historical data. Emission were modelled using MOVES. This work focused on the reconstruction of 

vehicle trajectories.  

Another instance of using GPS probe data was studied by Park et al. (2015); however, in addition to GPS 

probe data, they investigated the effects of having GPS-embedded onboard equipment that can also 

provide instantaneous speed data. Such a data source would provide high resolution speed data without 

the need to model it. In this case, the accuracy of the emission estimates lies in the penetration rate of 

vehicles equipped with data collection. This research was performed using Vissim simulations and 

included a study of the effects of varying levels of probe vehicle penetration rates.  

Yao et al. (2012) used video detection data was to monitor vehicles on a freeway. Computer vision was 

used to obtain vehicle speed and acceleration on a freeway as input for emission estimation. The 

research was focused on calibrating the computer vision software to obtain accurate speed 

measurement, which requires accounting for camera distortion. This method was performed on cases 

with relatively straight travel paths. While this application is similar to the focus of this thesis, the 

vehicle behaviour on a freeway is very different from that of a signalized urban corridor.  
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2.1.5 Emission Modelling Using Simulation Data 

When modelling emissions using simulation data, the quality and abundance of data is not an issue, as 

the simulation can be programmed to provide whatever data required for emission modelling. The 

challenge lies in creating the simulation model to a degree that satisfactorily represent the real-world 

situation, such that the emissions calculated as a result are valid. This method has been explored by 

coupling simulation software with emission modelling software, which can be used as a “ground truth” 

scenario in research investigating the effects of modelling with limited data. Traffic simulators such as 

the popular Vissim can record a plethora of vehicle data for every simulation step, which provides a 

simulated ground truth for the traffic activities, while detector data simulated by the model provide a 

limited scope of data. This technique was used by Csikós and Varga (2012), Shan et al. (2018), Park et al. 

(2015), Jamshidnejad et al. (2017), and Zhao and Sadek (2013). 

Xu et al. (2016) coupled a Vissim simulation with MOVES to analyse the sensitivity of emissions to 

simulation parameters in Vissim. They found that the emissions are sensitive to the vehicle type 

distribution in the fleet, as expected. It was also found that the range of the look-ahead distance in the 

car-following model and the range of the accepted deceleration rate can impact emissions. However, it 

was noted that there may be a discrepancy between behaviours in Vissim and in actuality, which were 

not confirmed in that study.  

Any traffic simulator can be used in a simulation and modelling approach. So et al. (2017) used an 

existing framework of the traffic simulator Aimsun (Aimsum, 2010) with the emission model PHEM 

(Hausberger et al., 2009). The existing framework was compared with an enhanced version where a 

vehicle dynamics model, CARSIM (Mechanical Simulation, 2017), is inserted in the process between the 

traffic simulation and the emission model. Another simulator, Paramics (Smith, Duncan, & Druitt, 1995), 

was integrated with MOVES in a study to investigate methods for extrapolating probe vehicle data to 

estimate total vehicle emissions (Zhao & Sadek, 2013).  

The simulation and emission modelling integration approach can be computationally demanding for 

large networks. Hence, work was undertaken by Muresan, Hossain, and Fu (2016) to investigate ways of 

reducing the computation burden while preserving adequate results. A trajectory clustering method was 

proposed that balances trade-offs between the quality of results and the computation cost of 

generating them. That study was performed with the integration of Vissim and MOVES.  

2.2 Emission Modelling Theory and Methods 

The problems of estimating vehicular emissions have been studied extensively in the past due to its 

large share in the overall emission inventory, covering many topics ranging from the mechanism of 

vehicle emission production to the modelling of vehicle emissions. First, some of the physical factors 

that impact emission generation are reviewed. Then, several emission models for practical applications 

are discussed.  
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2.2.1 Physical Basis of Vehicle Energy Consumption 

Before considering emission models, it is important to understand what factors affect emission 

production and how they are related. The amount of emissions that a vehicle generates is closely 

related to the amount of fuel consumed; as such, they can be estimated as a proportion of the latter 

(U.S. Environmental Protection Agency, 2016a). The amount of fuel consumed by a vehicle during its 

operation is directly related to the energy consumed by the vehicle, which depends on the energy 

required to overcome the vehicle’s load and the energy efficiency of the vehicle. Energy efficiency is a 

product of the engine’s thermodynamic and mechanical efficiency and the transmission efficiency. 

These factors are mostly related to the type and model of the vehicle with little to do with the 

infrastructure or traffic management; thus, we focus on the first factor, vehicle load, in this literature 

review. 

According to Ross (1997), the vehicle load is a sum of the power required to overcome 

• Rolling resistance 

• Air drag 

• Vehicle inertia 

• Road grade 

• Vehicle accessory power demand 

represented in Equation 1 as: 

𝑃𝑙𝑜𝑎𝑑 = 𝑃𝑟𝑜𝑙𝑙𝑖𝑛𝑔 + 𝑃𝑑𝑟𝑎𝑔 + 𝑃𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝑃𝑔𝑟𝑎𝑑𝑒 + 𝑃𝑎𝑐𝑐. (1) 

where the individual terms are defined as: 

𝑃𝑟𝑜𝑙𝑙𝑖𝑛𝑔 = 𝐶𝑟𝑚𝑔𝑣 

𝑃𝑑𝑟𝑎𝑔 =
1

2
𝜌𝐶𝑑𝐴𝑣3 

𝑃𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =
1

2
𝑚∗

𝑣2

𝑡
 

𝑃𝑔𝑟𝑎𝑑𝑒 = 𝑚 𝑔 𝑣 𝑠𝑖𝑛𝜃 

where  

𝑃 is the power required [kW] 

𝐶𝑟 is a unitless rolling resistance coefficient [-] 

𝑚 is the vehicle mass [tonnes] 

𝑔 is the gravitational constant [m/s2] 

𝑣 is the vehicle’s instantaneous travel speed [m/s] 
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𝜌 is the air density [kg/m3] 

𝐶𝑑 is a unitless drag coefficient [-] 

𝐴 is the frontal area of the vehicle [m2] 

𝑚∗ is the effective inertia of the vehicle, which accounts for moving parts; 𝑚∗ ≈ 1.03𝑚 

𝜃 is the angle of the road grade 

 

The coefficients 𝐶𝑟 and 𝐶𝑑 are found empirically and are also specific to the vehicle make and model. 

The factor that is the most important to traffic management – that is, the factor manageable through 

traffic controls – is vehicle speed. Thus, to quantify vehicle emissions for applications in traffic 

management, it is critical to capture the vehicle speed at high temporal resolutions. Other factors are 

also important as they play into the complex interdependencies of emission generation; for example, a 

vehicle’s mass affects its resulting behaviour. Additional characteristics that affect emission generation 

include fuel supply and technology, vehicle mechanics, weather, driving behaviours, etc. Some of these 

factors, such as those related to the drivers and environment, can be partially accounted for through the 

vehicle’s speed. In any case, in terms of data requirements, high resolution vehicle speed profiles are of 

the greatest importance. 

2.2.2 Emission Modelling in Practice 

Significant efforts have been devoted to developing empirical models and methods for estimating 

mobile emissions.  Models of different granularity and spatiotemporal aggregation levels have been 

developed. They vary by the assumptions made on available data for the characteristics of the mobile 

sources such as vehicle type, speed profile, fuel technology, and road grade (Boulter, McCrae, & Barlow, 

2006; Franco et al., 2013b).  Many of the emission models developed incorporate mechanistic-based 

models combined with empirical factors. In these models, the mechanistic functions represent the 

physical process of emission production, while the empirical factors account for vehicle and network 

characteristics. Emission models that are solely based on empirical factors also exist. 

The progression of emission modelling developments appeared to be leaning more towards empirical 

approaches. This seems to be resulting from an attempt to incorporate more and more factors, most of 

which are difficult to model mechanistically. Still, most of the models reviewed have both mechanistic 

and empirical components, aside from the models based on the European Handbook of Emission Factors 

(HBEFA) as explained in section 2.2.2.4. From an instinctive perspective, mechanistic models may appear 

to be more modular, flexible, and versatile for transitioning through times of technological change. 

However, the nature of emission production is so complex that it is difficult for models to function in 

purely mechanistic form. Thus, empirical factors will always be required to account for processes that 

are not represented mechanistically. These factors need to be calibrated to keep the model current. 

Considering the need for updating empirical factors, models that are more simplistic in their functional 

form may be easier to calibrate.  
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The literature on emission models shows the dependence on data availability in estimating the 

emissions produced by traffic. The models perform best using high resolution traffic data, such as 

instantaneous speeds (Bowyer, Akcelik, & Biggs, 1985; Swanson, Talbot, & Dumont, 2010). Thus, in the 

interest of obtaining accurate results, high resolution traffic data should be used, i.e. second-by-second 

vehicle speed and acceleration profiles. These profiles, referred to as vehicle trajectories, are normally 

not directly measured in their entirety by traffic detectors. However, measurements from traffic 

detectors can be used to reconstruct the trajectories, whether the measurements come from mobile 

sources such as GPS data (Shan et al., 2018; Sun, Hao, Ban, & Yang, 2015) or stationary sources (Laval, 

He, & Castrillon, 2012).  

2.2.2.1 Vehicle Power Model 

An example of a highly mechanistic approach can be seen in the methods introduced in a fuel 

consumption analysis guide by Bowyer, Akcelik, and Biggs (1985). The early models are still in use, but 

minor changes were introduced. A previous study shows this model significantly overestimating 

emissions (Demir, Bektaş, & Laporte, 2011); however, this issue may have been rectified as the model 

parameters were recently calibrated for newer vehicle fleets (Akçelik et al., 2014). The guide presented 

different formulations, including formulations that use one function based on instantaneous vehicle 

speed, formulations that divide vehicle operation into four modes (acceleration, deceleration, cruising, 

and idling), and formulations that use average speeds. 

The instantaneous model in this collection of methods is the basis for the SIDRA software package 

(Akçelik et al., 2014), a traffic signal timing and analysis, which is widely used in Australia. The current 

version of the instantaneous model is formulated as 

𝑓𝑡 =
𝑑𝐹

𝑑𝑡
= 𝛼 + 𝛽1𝑅𝑇𝑣 + [𝛽2𝑎𝑃1]𝑎>0  ,    𝑃𝑡 > 0 (2) 

     = 𝛼 ,    𝑃𝑡 ≤ 0 

 

𝑃𝑇 = min(𝑃𝑚𝑎𝑥, 𝑃𝐶 + 𝑃1 + 𝑃𝐺) 

𝑃𝐶 = 𝑏1𝑣 + 𝑏2𝑣3 

𝑃1 =
𝑀𝑉𝑎 𝑣

1000
 

𝑃𝐺 = 9.81𝑀𝑣 (
𝐺

100
) (

𝑣

1000
) 

𝛼 =
𝑓𝑖

3600
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where 

𝑓𝑡  is the instantaneous fuel consumption rate [mL/s] 

𝑃𝑇  is the total tractive power [kW] 

𝑃𝑚𝑎𝑥  is the maximum engine power [kW] 

𝑃𝐶 , 𝑃𝐼 , 𝑃𝐺  are the components of power for cruise, inertia, and grade respectively [kW] 

𝐺  is the road grade [-] 

𝑀𝑉  is the vehicle mass including loads [kg] 

𝑣  is the instantaneous speed [m/s] 

𝑎  is the acceleration rate [m/s2] 

𝑓𝑖  is the constant idle fuel consumption rate [mL/h] 

α  is the constant idle fuel consumption rate [m/s2] applicable to all modes 

𝑏1, 𝑏2, 𝛽1, 𝛽2 are parameters for rolling resistance, aerodynamic drag, and efficiency 

 

From this model, it can be seen that a similar set of variables are included compared to the physical 

model of fuel consumption. Notably, instantaneous vehicle speed and acceleration, as well as vehicle 

mass and road grade are vital factors in both models. Once fuel consumption is known, an emission 

production factor relating the greenhouse gas to the fuel can be multiplied to the fuel consumption to 

calculate emissions (U.S. Environmental Protection Agency, 2016a). 

2.2.2.2 Comprehensive Modal Emission Model (CMEM) 

The Comprehensive Model Emissions Model (CMEM) was developed in Europe to address additional 

vehicular factors, such as a variety of vehicle types and the vehicle’s operating condition (Scora & Barth, 

2007). The structure of the model finds the tailpipe emissions as a function of the engine power 

demand, engine speed, air/fuel ratio, fuel rate, emissions from the engine, and the catalyst pass 

fraction. The factors are not stand-alone variables but have interdependencies. Their relationships can 

be found in the development document for CMEM (Barth et al., 2009). In CMEM, there are also four 

modes of operation: variable soak time start, stoichiometric operation, enrichment, and enleanment. 

Compared to the four modes from the previous modal model, these modes are based on the conditions 

of the vehicle’s engine (e.g. its air/fuel ratio) rather than its movement profile. There is evidence that 

this model may under-estimate emissions significantly (Jaikumar, Shiva Nagendra, & Sivanandan, 2017), 

although an earlier study shows this model overestimating emissions (Demir et al., 2011). Smit et al. 

(2010) showed modal models like CMEM overestimating some emissions and underestimating others in 

a study that groups similar model types together.  
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2.2.2.3 MOtor Vehicle Emission Simulator (MOVES) 

One of the most widely used emission models is the MOtor Vehicle Emission Simulator (MOVES) 

developed by the US’s Environment Protection Agency (EPA). It was created to be a standard of practice 

for estimating mobile emissions (Swanson et al., 2010). MOVES is an improved version of the previous 

EPA models such as MOBILE5 and MOBILE6. One of the key improvements is the introduction of Vehicle 

Specific Power (VSP) (Frey, Unal, Chen, & Song, 2003), which is a normalized function for quantifying the 

power consumed by a vehicle (Jiménez-Palacios, 1999). Similar to the SIDRA model, VSP is assumed to 

be a function of the vehicle speed, vehicle mass, road grade, and other coefficients related to vehicle 

properties, formulated in Equation 3 as 

𝑉𝑆𝑃 = (
𝐴

𝑀
) 𝑣 + (

𝐵

𝑀
) 𝑣2 + (𝑎 + 𝑔 sin 𝜃)𝑣 (3) 

where 

VSP is Vehicle Specific Power 

A is the rolling resistance coefficient [kW⋅s/m] 

B  is the mechanical rotating friction coefficient [kW⋅s2/m2] 

C  is the aerodynamic drag coefficient [kW⋅s3/m3] 

M is the vehicle’s mass [tonnes] 

𝑣 is the instantaneous vehicle speed [m/s] 

𝑎 is the instantaneous vehicle acceleration [m/s2] 

𝑔 is the gravitational constant [m/s2] 

𝜃 is the road grade percentage [-] 

 

Based on the VSP function value as well as vehicle speed and acceleration, vehicle activities can be 

grouped into Operating Modes, of which the resulting distribution is used by MOVES to estimate the 

total emissions of different types. The details of the operating mode bins are in Appendix A – Operating 

Mode Bins. The parameters for calculating VSP have been recalibrated since its inception and can be 

found in the Population and Activity of On-Road Vehicles technical report for MOVES (U.S. 

Environmental Protection Agency, 2016b). Other developments in MOVES that differentiate it from its 

predecessors include a binning methodology, which reduces the need for regression modelling and 

makes the model more data-oriented (Frey et al., 2003). MOBILE, the earlier version, was shown to 

belong to a group of average speed models that over- or underestimate emissions by 10-15%, which was 

in the mid-range of performance for the models in that study. In the latest efforts to validate MOVES, it 

was found that the estimation accuracy varies between vehicle ages, with newer vehicle resulting in 
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much more accurate estimates (Choi & Koupal, 2011). This is favourable since there is a much greater 

proportion of new vehicles in the local vehicle fleet (Statistics Canada, 2009).   

2.2.2.4 European Handbook of Emission Factors 

A highly empirical model is recommended in the German Federal Transport Plan or 

Bundesverkehrswegeplan (BVWP). It includes a handbook for conducting cost-benefit analyses of 

transportation projects, which describes a method for emission estimation (Mann, 2016). This model is 

based on the European Handbook of Emission Factors (HBEFA), which is periodically updated with new 

data (Rexeis et al., 2017). It is unique from the emission models presented in this review, because it 

calculates emissions as a product of purely empirical emission factors. Blocks of traffic disaggregated by 

space and time are multiplied by their corresponding emission factor, as shown in Equation 4.  

Δ𝐸𝑀𝐹𝐺(𝑉𝑏),𝑠𝑓 = ∑ ∑ ∑(Δ𝐹𝐿𝐹𝐺(𝑉𝑏),ℎ,𝑠 × 𝑒𝑓𝑙𝐹𝐺(𝑉𝑏),𝐻𝑆𝑇,𝑍,𝑣𝑚𝑎𝑥,𝑠𝑓) × 10−3

𝑠ℎ𝐹𝐺

(4) 

where 

𝛥𝐸𝑀 is the difference in emissions between the baseline and alternative cases [tonnes/year] 

𝑠𝑓 is a pollutant index (NOX, CO, HC, PM) 

𝐹𝐺(𝑉𝑏)is a vehicle class index 

ℎ pertains to an interval in the temporal disaggregation 

𝑠 pertains to stretch in the spatial disaggregation 

𝛥𝐹𝐿 is the difference in vehicle activity between the baseline and alternative cases in VKT 

𝑒𝑓𝑙 is the emission factor corresponding to the vehicle activity [g/vehicle-km] 

𝐻𝑆𝑇 is the street type index 

𝑍 is the traffic condition index 

To calculate emission using this model, traffic must be discretized into segments by traffic state, road 

type, and vehicle classes. The emission factor for each traffic state pertains to a specific vehicle type, 

road type, traffic state, speed limit, and pollutant. All of the required factors are provided with the 

handbook. These emission factors were developed using empirical data collected through PEMS and 

chassis dynamometer testing over many stages of development. Due to resource constraints, testing 

could not be performed for all possible driving situations. Instead, testing data was used to calibrate the 

PHEM model, which was then used to calculate emission factors for further driving situations (Rexeis, 

Hausberger, Kühlwein, & Luz, 2013). The PHEM model is an instantaneous power-based emission model 

that treats vehicle power demand as the sum of several power load components (Hausberger et al., 
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2009). Its form is similar to that of the vehicle power consumption model formulated by Ross (1997), 

described in Section 2.2.1. 

The HBEFA model, due to its simple form, can be computed easily and used at all levels of aggregation. 

However, it is highly dependent on the already-calibrated emission factors. Emission factors require 

extensive effort to develop (Franco et al., 2013b) and are difficult to generalize. As such, it is difficult to 

adopt such a model outside of the context for which it was developed.  

2.2.2.5 COPERT IV 

COPERT IV (Computer Program to calculate Emissions from Road Transport) is a software package 

created for standard practice in Europe by the European Environment Agency (Ntziachristos et al., 

2018). It recommends three tiers of methodology. The methodologies range in the quality of estimates. 

Tier 3 has the highest quality but also requires the most data to use.   

In Tier 1, emissions are calculated based on aggregate fuel consumption data according to Equation 5. 

𝐸𝑖 = ∑ ∑ 𝐹𝐶𝑗,𝑚 × 𝐸𝐹𝑖,𝑗,𝑚

𝑚𝑗

(5) 

where 

 𝐸𝑖  is the emission of pollutant 𝑖 [g] 

 𝐹𝐶𝑗,𝑚 is the fuel consumption of vehicle category 𝑗 using fuel 𝑚 [kg] 

𝐸𝐹𝑖,𝑗,𝑚 is the fuel consumption-specific emission factor of pollutant 𝑖 for vehicle category 𝑗 and 

fuel 𝑚 [g/kg] 

The fuel consumption and emission factors are based on data aggregated by country. This is the most 

aggregate method to be used when only aggregate fuel consumption data is available.  

If VKT for different vehicle categories and technologies is available, the Tier 2 method defined by 

Equation 6 can be used: 

𝐸𝑖,𝑗 = ∑(𝑇𝑀𝑗,𝑘 × 𝐸𝐹𝑖,𝑗,𝑘) 

 Or (6) 

𝐸𝑖,𝑗 = ∑(𝑁𝑗,𝑘𝑀𝑗,𝑘 × 𝐸𝐹𝑖,𝑗,𝑘) 

where 

 𝑇𝑀𝑗,𝑘 is the total annual distance driven by vehicles in category 𝑗 and technology 𝑘 [veh-km] 

 𝐸𝐹𝑖,𝑗,𝑘 is the emission factor of pollutant 𝑖 for category 𝑗 and technology 𝑘 [g/veh·km] 
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 𝑀𝑗,𝑘 is the average annual distance per vehicle in category 𝑗 and technology 𝑘 [km/veh] 

𝑁𝑗,𝑘 is the number of vehicles in category 𝑗 and technology 𝑘 

Tier 2 is a method that calculates emission based on distance travelled but is insensitive to traffic states 

and detailed vehicle activities. The calculation uses factors that account for different types of vehicles 

operating with different technology classes. The vehicle types and technology classes follow standard 

European classifications (Ntziachristos et al., 2018). 

If further information such as vehicle speeds are known, the Tier 3 method can be used. In Tier 3, vehicle 

speed distribution profiles can be accounted for in the hot emissions formulae in Equation 7: 

 𝐸𝐻𝑂𝑇;𝑖,𝑘,𝑟 = 𝑁𝑘 × 𝑀𝑘,𝑟 × 𝑒𝐻𝑂𝑇;𝑖,𝑘,𝑟 (7) 

𝑒𝐻𝑂𝑇;𝑖,𝑘,𝑟 = ∫ [𝑒(𝑣) × 𝑓𝑘,𝑟(𝑣)]𝑑𝑣 

where 

𝐸𝐻𝑂𝑇;𝑖,𝑘,𝑟 is the hot emissions 

𝑁𝑘   is the number of vehicles 

𝑀𝑘,𝑟  is the distance driven per vehicle 

𝑒𝐻𝑂𝑇;𝑖,𝑘,𝑟 is the emission factor 

𝑣  is the vehicle speed 

𝑒(𝑣)  is the dependency of 𝑒𝐻𝑂𝑇;𝑖,𝑘,𝑟 on the the speed 

𝑓𝑘,𝑟(𝑣)  is the equation describing the frequency distribution of the vehicle speeds 

𝑖, 𝑘, 𝑟  pertain to a certain pollutant, vehicle technology, and road type respectively 

While COPERT models do not mechanistically represent physical processes that generate emissions, a 

high-resolution speed profile can be taken into consideration. There is evidence that the COPERT model 

may underestimate emissions; this evidence came from a study using distance-based emission factors, 

i.e. the Tier 2 method (Jaikumar et al., 2017). Similar results were observed in (Demir et al., 2011) where 

COPERT was one of two emissions models that underestimated field measurements out of six models 

tested.  Although the software is open-source, some of the required data for using the software requires 

purchase.  

2.3 Real-Time Emission Estimation Methods 

Several methods for real-time emission estimation based on the MOVES model have been developed. 

These methods typically involve first generating emission rates for a basic set of input variable 

combinations that account for certain variables, alternating the calculation algorithm used by MOVES, or 

a combination of both. Real-time methods that use other emission models have also been used.  
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2.3.1 Pre-Generating Emission Rates with MOVES 

To avoid having to run the MOVES software, Haobing Liu, Xu, Rodgers, Akanser, and Guensler (2016) 

created a matrix of emission rates using MOVES that can be used to save computing time. The matrix 

was generated by feeding MOVES combinations of the input variables. It was shown that the matrix 

method could estimate emissions in less than 1% of the time required by running the MOVES software 

interface. The matrix was developed for Operating Mode Distribution as well as speed inputs. To 

develop a sufficient variety of factors, 146 853 MOVES runs were required for each region of interest. 

The factors were sensitive to ranges of humidity at 5% intervals, temperatures at 1°F intervals, 31 

vehicle model years, 13 vehicle types, and different fuel types. This method was used by Xu et al. (2016) 

for estimating emissions from Vissim simulations in real time.  

Hang Liu et al. (2011) developed a real-time emission monitoring system as well. To enable real-time 

emission estimates, similar to the work of Haobing Liu et al. (2016), a look-up table of emission rates 

was pre-generated using MOVES. However, not all combinations of inputs were accounted for. The look-

up table contained emission rates by distance that account for different vehicle classes, average speeds, 

temperatures, and humidity. To account for combinations of speed, temperature, and humidity, multi-

dimensional interpolation was used.  

A method based pre-generated emission rates was also used by Yao et al. (2012), where computer vision 

obtained speed profiles of vehicles to generate Operating Mode Distribution inputs. The computer 

vision works in real-time, as does the emission estimation. In this case, data such as vehicle age 

distribution, fuel data, and meteorological data were held constant, similar to previous cases.  

2.3.2 Alternative Emission Estimation Algorithms for MOVES 

In the development of a real-time emission monitoring framework, Park et al. (2015) created a New 

Interface for MOVES (NIM). They made an important statement about the MOVES inputs regarding real-

time estimation by noting that the Operating Mode Distribution is the most important input for real-

time estimation, since it is dynamic, while other inputs remain relatively constant over a small spatial-

temporal scale. Thus, the NIM only uses the Operating Mode Distribution as an input. The NIM is a 

Python-based software that accesses the MOVES database to retrieve information for emission 

estimation. Its role in the overall emission monitoring framework is illustrated in Figure 3. A model that 

is only required to be sensitive to the Operating Mode Distribution would take significantly less time to 

run. 
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Figure 3: New Interface for MOVES (NIM) in an Emission Monitoring Framework (Park et al., 2015) 

 

2.3.3 Other Emission Models 

Jamshidnejad et al. (2017) proposed a method that generates real-time emission estimates by coupling 

a traffic flow model with the microscopic emission model, VT-micro.  The resulting method developed 

was considered a mesoscopic emission monitoring framework, since it was applicable to any 

macroscopic flow model and microscopic emission model. VT-micro is a microscopic emission model 

that uses instantaneous vehicle speeds and acceleration.  

Macroscopic real-time emission monitoring was also used by Csikós & Varga (2012), where an emission 

factor is applied to average speeds from real-time measurements. The emission factors were obtained 

from the COPERT model and validated with Versit+Micro through a Vissim add-on.  

2.4 Traffic Management Technology 

Traffic management requires monitoring traffic through the detection of on-road vehicles. The detection 

of vehicles often includes detection of vehicle-related properties such as speed and vehicle 

classification. The most commonly used sensor technology for vehicle detection is inductive loop sensing 

due to its accurate presence detection and reliability. Its cost is also relatively low compared to other 
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types of sensors. Inductive loop technology uses wires embedded in pavement that detect the presence 

of vehicles as they pass over. Other pavement embedded technologies include magnetometers and 

magnetic sensors, the latter of which is less sensitive to vehicle presence than inductive loops. These are 

used as alternatives to the inductive loops when the road structure or condition does not permit loops. 

(Federal Highway Administration, 2017) 

Methods non-invasive to pavement are also available. For example, microwave, infrared, ultrasonic, and 

acoustic sensors can be used to detect vehicles. Microwave, infrared, and ultrasonic technologies can be 

used as radars, where a device transmits energy, then measures its reflection, referred to as active 

sensing. Acoustic and also infrared technologies are used in passive sensing, where energy is not 

transmitted but only detected from vehicles and other objects. These methods have varying levels of 

reliability depending on the surrounding environment and weather conditions. Furthermore, aside from 

active infrared sensing, these methods can be unreliable for vehicle detection at certain speeds. 

However, it is an advantage to not require pavement alterations to install these sensors. (Federal 

Highway Administration, 2017) 

Inductive loops can detect the presence of vehicles where the detectors are installed, but has trouble 

classifying the vehicles and recognizing repeated detections of the same vehicle. Lacking this 

information presents challenges in determining detailed vehicle activity profiles. Vehicle activity 

modelling methods developed in the past were designed without this information available.  

Currently, advances in detection technology is providing more detailed data, allowing vehicle tracking. 

This allows multiple detections of the same vehicle to be associated. An example is computer vision 

applied to traffic cameras, an emerging traffic monitoring technology already in use, but also still being 

improved (Sokemi Rene Emmanuel Datondji et al., 2016). While it is currently unable to provide 

accurate second-by-second trajectory information due to camera distortion (S. René E. Datondji, Dupuis, 

Subirats, & Vasseur, 2016; Sokemi Rene Emmanuel Datondji et al., 2016), it can provide detections of 

vehicles in specified locations, and these locations in the image plane can be matched to the real world 

(Kanhere & Birchfield, 2010). Furthermore, computer vision can differentiate the vehicle type in terms 

of rough categories (Sokemi Rene Emmanuel Datondji et al., 2016).  

Other recent developments in vehicle detection include Bluetooth and Wi-Fi sensing. These methods 

rely on sensors that receive the MAC (Media Access Control) address of devices in a vehicle such as 

mobile phones. Like video-based detection, they can re-identify vehicles using the unique identities of 

devices. The re-identification of vehicles at multiple locations allows these sensors to monitor travel 

times between these locations. A similar technique can be applied to ANPR (Automatic Number Plate 

Recognition), where license plates are captured by camera and recognized at specified locations. (José, 

Díaz, Belén, González, & Wilby, 2016) While vehicle re-identification technologies can provide 

macroscopic travel time data, they are unable to track vehicle movement in detail, unlike video-based 

detection.   
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Chapter 3 Research Methodology 

As discussed in Chapter 1, one of the major difficulties in emission quantification is how to obtain real 

world ground truth data, for both emission production and detailed vehicle activity information.  In this 

research we propose to address this challenge by introducing a simulation-based approach, which 

couples two well validated simulation models: Vissim for traffic simulation (PTV Group, 2015) and 

MOVES for emission estimation (US EPA, 2015). This method is adopted as a testbed environment for 

generating the “ground truth” emissions estimates, which are then used to develop real-time emission 

estimation model.  To save time in the research process and to achieve a real-time calculation method, a 

shortcut method for running MOVES was developed. Thus, the emission estimation process does not 

require running the MOVES software, but the results are practically identical to those generated by the 

MOVES software.  

The overall framework of the research is illustrated in Figure 4. First, a Vissim model is created using 

field data, which simulates the traffic controls, vehicle activities, and data collection using assumed 

sensor settings. The outputs from the traffic simulation provide the assumed traffic data required for 

the emission model, such as traffic flow, signal timings, and high-resolution vehicle activity data. This 

way, the original vehicle trajectories are known in detail. The process follows two main paths: one path, 

indicated with solid lines, showing how the “ground truth” emissions are estimated and the other, 

indicated with dashed lines, through which the real-time emission modelling method is tested. In the 

end, the emission estimates from both paths are compared to evaluate the adequacy of the proposed 

real-time modelling method.  
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Figure 4: Research Framework 
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3.1 Vissim Model 

The traffic simulation model was created in PTV Vissim 7 (PTV Group, 2015). Details of this model, 

including the site it is based on, characteristics of the network, and on-site traffic detection are 

described below. The subsections describe how data was used to create the model (3.1.1), how the 

model is used to simulate detector data for the research (3.1.3), how the model was validated (3.1.2), 

and how alternative scenarios of the original Vissim model was created for sensitivity analyses (3.1.3).  

Site Description 

The case study is based on an urban corridor located in Cambridge, Ontario, Canada, as shown in Figure 

5. This site was chosen because it represents a typical urban corridor with traffic signals and because 

traffic data was available to calibrate and validate a simulation model based on this site. It runs along 

Hespeler Road spanning from Dunbar Road to the Highway 401 eastbound ramp. From south to north, 

the major roads intersecting with Hespeler in this segment are Dunbar Road, Sheldon Drive, Bishop 

Road, Pinebush Road, and the Highway 401 Eastbound Ramp. Between these five major intersections 

are four minor intersections that serve as entrance/exits to retail parking lots. 
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Figure 5: Case Study Traffic Corridor (Circled are major intersections.) 

Traffic Network Description 

Most of the corridor is a three-lane road with left-turn storage lanes and actuated signal control at 

intersections. Apart from the Pinebush intersection, the minor direction approaches have two thru lanes 

or fewer and the signal actuation is partial, with minor thru movements and all left-turn movements 

actuated. At Pinebush, both major and minor directions are fully actuated with two left-turn storage 

lanes.  
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On-Site Traffic Detection 

The major intersections of the corridor were implemented with a set of video-based counting and 

presence detection as well as Wi-Fi detectors. The video-based system provides volumes and turning 

movement counts, while the Wi-Fi detectors provide travel time measurements. Inductive loop 

detectors are used for signal actuation and for queue length detection, but the loop detector data was 

not used in this research.  

3.1.1 Input Data 

The data used to construct the Vissim model are listed in Table 2 with their sources and purposes. The 

Vissim model is intended to be as realistic as reasonably possible given the available data so that studies 

conducted in the model would be valid for the existing conditions of the site. Most of the data were 

used for model-making, except for the travel speed measurements which were used for model 

validation.  

Table 2: Data for Building Vissim Model 

Information Source Format Modelling Application 

Road geometry Google Maps Image in JPEG 
Constructing road links, 

lanes, stop-line positions 

Speed limits 
Region of 

Waterloo  
GIS shape file 

Inserting speed decision 

markers 

Signal plans 
Region of 

Waterloo 
Tables in PDF 

Programming signal controls 

for all intersections 

Positions of loops detectors 

for signal actuation 

Region of 

Waterloo 

Setback descriptions 

in email 

Placing detectors for signal 

actuation 

Turning 

Movement 

Counts 

Major 

Intersections 

Video-based 

TMC 

Spreadsheets in 

Excel 

Specify vehicle input 

volumes 

Specify route decision ratios 

for intersection movements 

Minor 

Intersections 

Traditional 

TMC 
Tables in PDF 

Travel Speeds between 

major intersections 
Wi-Fi Detectors 

Spreadsheets in 

Excel 

Validate the Vissim model 

based on travel time 

distributions 

 

3.1.1.1 Geometry 

The road geometry was constructed based on Google Map images. Several screenshots were stitched 

together to cover the entire site (Figure 6). This stitched image was used as a background in Vissim to 
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trace the links and lanes (Figure 7). The built-in map background available did not provide enough clarity 

to build accurate lane layouts; thus, high-resolution Google Maps screenshots were used.  
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Figure 6: Google Maps Background for Building Vissim Model 
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Figure 7: Screenshot from Vissim Simulation – Pinebush Intersection 

 

3.1.1.2 Speed Limits 

Speed decision markers were inserted at all entry points into the network and at links where the speed 

limit changes from its upstream link. The markers were set to define link speeds according to 

information provided in the open data catalogue of the Region of Waterloo (henceforth referred to as 

the Region). This information was obtained in the form of Geographic Information System (GIS) 

shapefiles. As shown in Figure 8, the corridor running north-south has a speed limit of 60 km/h with 

most east-west approaches having a speed limit of 50 km/h. For the minor intersection, the east-west 

approaches come from parking lots, and are assumed to have an approach speed of 25km/h until they 

reach the intersection.  
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Figure 8: Speed Limits – Hespeler Corridor from Dunbar to Hwy401 

3.1.1.3 Signal Control 

Signal plans were obtained from the Region for all intersections, with a sample included in Appendix B – 

Sample of Signal Plan. The Region also described the positioning of signal actuation detector loops in 

Appendix C – Signal Actuation Detector Loop Layout . These were used to program the signal controllers 

in Vissim through the Ring Barrier Control (RBC) tool with detector actuation.  

3.1.1.4 Traffic Volumes and Turning Ratios 

The vehicle input volumes and turning ratios were based on turning movements counts (TMC) provided 

by the Region. A sample is provided in Appendix D – Sample of Turning Movement Count Data. Video-

based TMC was available for major intersections on one day only – June 8, 2016. TMC’s for all 

intersections were available from different dates over the past several years; these were used for the 

remaining minor intersections. In the Vissim model that is based on field conditions, the vehicle inputs 

are specified per hour according to the TMC data. Due to the availability of data, the following hours 

Dunbar 

Bishop 

Sheldon 

Langs 

Pinebush 

Eagle 

Hwy401 EB ramp 

Hespeler 

N 
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were simulated: 7-10am, 3-6pm, and 8-10pm, denoted henceforth as the morning period, afternoon 

period, and evening period, respectively. These hours had data available across all intersections.  

3.1.2 Model Validation 

In the Vissim model, travel speeds were measured between major intersection from the upstream stop-

line to the downstream stop-line. The distribution of travel times from the simulation were then 

compared to the distribution of travel times in the field as measured by the Wi-Fi-detectors. It should be 

noted that the Wi-Fi-detectors have a detection range of several meters, so they are not as precise as 

the simulated travel time detectors. Thus, the distribution of field travel times is expected to be more 

widespread than those measured in the simulation. Furthermore, the placement of the Wi-Fi detector 

could influence the measurements taken. They are typically placed at the corner of an intersection 

inside a cabinet among other electronic equipment.  

The distribution of travel times for all segments between major intersections for all simulated hours are 

shown in Figure 9. The comparison was also disaggregated by period in Appendix E – Comparison of 

Field and Simulation Travel Times. Wi-Fi detectors also have a low detection rate. The difference in 

sample size between the simulation and field data are illustrated by scaling the distribution plots by 

sample size in Figure 10. Scaled plots disaggregated by hour are also included in Appendix E – 

Comparison of Field and Simulation Travel Times. 

The field data is shown to have a much lower sample size and wider spread than the simulation travel 

time measurements, as expected. However, it is still evident that the travel times of the simulation and 

field data generally fall within the same ranges with a similar overall distribution. When disaggregated 

by hour, the same consistency is seen for most segments in most hours.  
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Figure 9: Comparison of Field and Simulation Travel Times for Validation – Equal Area Plots 

 

Figure 10: Comparison of Field and Simulation Travel Times – Area Scaled by Counts 
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3.1.3 Detector Simulation 

Aside from simulating vehicle activities, the Vissim model can also simulate detectors. The data assumed 

to be available includes vehicle presence detection at the positions near an intersection that can be 

specified by the users. Furthermore, multiple detections of the same vehicle can be known as detections 

of the same vehicle. In Vissim, the data collection feature was used to generate this data. Data collection 

points were placed at the following locations with respect to an intersection approach: an advance 

location upstream from the intersection, the location of the stop-line, and the exit at the end of the 

intersection, as indicated in Figure 11. Detectors were placed according to this scheme for the approach 

of each major intersection that is preceded by another major intersection. Only one advance detector 

would be used in the method, but several advance detectors were placed in the model to investigate the 

effects of the location of the advance detector. The various locations considered were at 25, 50, 75, and 

100m setbacks. In addition, detectors were placed for turning movements to detect stops made during 

permissive turns, shown in Figure 12.  

 

Figure 11: Detector Locations 

Stop-Line Detector Position 

Exit Detector Position 

25, 50, 75, and 100 m 

Advance Detector Positions 
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Figure 12: Detector Locations for Turning Movements 

 

3.1.4 Alternative Scenarios Created for Sensitivity Analysis 

Aside from the Vissim model created according to the field data, additional Vissim models were created 

for sensitivity analysis. The additional Vissim model scenarios and their properties are summarized in 

Table 3. Each alternative scenario is used to analyse the sensitivity of the proposed method to various 

factors.   

Turning Stop Detector 

End Detector for Turns 
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Table 3: Alternate Vissim Model Scenarios 

Alternative Scenario Simulation Model Variables 

Scenario 

Number 

Scenario 

Description 

Vehicle 

Input: 

Volumes 

Vehicle Input: 

Vehicle Types 

Signal Plans Speed Limits 

0 Field 

Conditions 

As per TMC 

data 

As per TMC 

data 

As provided by the 

Region 

As found in the 

Region’s data 

1 Volume 

Variations 

Gradually 

Increasing 

Constant: 

95% PC 

5% HGV 

Constant: 

Morning period 

signal plans 

Constant: 

As per data 

2 Fleet 

Variations 

Constant: 

Average of 

Scenario 0 

0% to 30% 

HGV at 5% 

increments 

Constant: 

Morning period 

signal plans 

Constant: 

As per data 

3 Signal 

Coordination 

Same as 

Scenario 1 

Constant: 

95% PC 

5% HGV 

Coordinated for NB 

thru, 

Otherwise based 

on morning period 

signal plans 

Constant: 

As per data 

4 Signal 

Variations 

Constant: 

Average of 

Scenario 0 

Constant: 

95% PC 

5% HGV 

Thru green 

increases from 30s 

to 65s at 5s 

increments, 

Otherwise based 

on morning period 

signal plans 

Constant: 

As per data 

5 Speed Limit 

Variations 

Same as 

Scenario 1 

Constant 

95% PC 

5% HGV 

Constant: 

Morning period 

signal plans 

3 models, each with 

all speed limits at 

50, 60, or 70 km/hr 

6 Detector 

Location 

Variations 

Same as 

Scenario 1 

Constant 

95% PC 

5% HGV 

Constant: 

Morning period 

signal plans 

Constant: 

As per data 

 

3.1.4.1 Scenario 0 – Field Conditions 

The Vissim model for Scenario 0 is based on field conditions. The vehicle input volumes and types were 

specified for the hours of 7-10am, 3-6pm, and 8-10pm according to TMC data from the field. Vehicles 

were classified in terms of Light Duty Vehicles, Buses, Single-Unit Trucks, and Articulated Trucks in the 

video-based TMC data. In the older manual TMC data, Single-Unit and Articulated Trucks were not 

differentiated. Due to their small percentage (<5%), they were specified as Single-Unit Trucks in the 
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simulation model. The equivalent vehicles used in the Vissim model are Passenger Cars, Buses, Heavy 

Goods Vehicles, and Articulated Heavy Goods Vehicles. The signal plans are specified as per the signal 

plan documents provided by the Region for the corresponding time periods. The speed limits are set as 

per the Region’s data as well. 

Scenario 0 is simulated in one continuous simulation. Each time period (morning, afternoon, and 

evening), including the first time period, is preceded by a warm-up period. Simulation data from the 

warm-up period is not used. The warm-up time for the beginning of the simulation and the beginning of 

each subsequent time period is half an hour and one hour, respectively. The warm-up time of half an 

hour was determined by examining the travel times between major intersections at 5-minute intervals. 

For all intersections, the travel time distributions do not show significant changes in pattern after half an 

hour into the simulation or sooner. Thus, half an hour is allowed for warming up. In between periods, an 

hour is used conservatively for the transition between traffic conditions from the previous period to the 

next. 

3.1.4.2 Scenario 1 – Volume Variations 

In Scenario 1, the volume of the vehicle inputs increases gradually over the course of the simulation. The 

purpose of this simulation is to provide results over a range of volumes so that the sensitivity of the 

proposed method to different volumes can be examined. To specify vehicle input volumes for Scenario 

1, the field volumes across all available hours – as specified in Scenario 0 – were averaged, and then 

input volumes ranging from 25% to 200% of the average were found at 25% increments. This creates 

eight levels of input volumes, resulting in a gradual increase of approach volumes. One simulation is run 

continuously with the input volume increasing by one level every half an hour. 

The rest of the variables were held constant. The vehicle input fleet distribution was set at 95% PC and 

5% HGV continuously. Oher vehicle types were omitted for simplicity, as they account for a very small 

percentage (<5%). The signal plan follows that of the morning period continuously. The speed limits 

remained unchanged from Scenario 0. 

3.1.4.3 Scenario 2 – Fleet Variations 

Scenario 2 was created to investigate the effects of having different proportions of HGV’s in the fleet. 

The amount of HGV’s increase from 5% of the input volume to 30% at 5% increments every half hour, 

after a warm-up period of half an hour. In the Scenario 2 simulations, the input volumes are held 

constant at the average of values from Scenario 0 – Field Conditions for each input. The signal plan and 

speed limits are held constant as in Scenario 1.  

3.1.4.4 Scenario 3 – Signal Coordination 

In Scenario 3, the simulation inputs vary across two variables: volume and signal timing. The volume 

follows the same input scheme as in Scenario 1. The difference between Scenario 1 and 3 is that the 

signal plan in Scenario 3 is coordinated for the northbound direction according to the offsets in Table 4. 
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This scenario was used to compare the results of coordinated and uncoordinated signal plans, across 

different volumes.  

Table 4: Signal Offsets for Coordination 

Intersection Distance from Previous 

Intersection [m] 

Distance from 

Dunbar [m] 

Speed 

[km/h] 

Signal 

Offset [s] 

Dunbar 0 0 63 0 

Cambridge Centre 190.7 190.7 63 11 

Bishop 331.4 522.1 63 30 

Shoppers 316.6 838.7 63 48 

Sheldon-Langs 412.4 1251.1 63 71 

Burger King 145.6 1396.6 63 80 

Blackshop 193.4 1590.1 63 91 

Pinebush-Eagle 363.4 1953.4 63 112 

Hwy401 564.9 2518.3 63 144 

3.1.4.5 Scenario 4 – Signal Variations 

The simulation model in Scenario 4 holds the input volumes and vehicle types constant. The varying 

variable is the green interval for the thru movements of the corridor direction at all intersections. The 

thru green interval increases from 30s to 65s at 5s increments every half hour period after a half hour 

warm-up period.  

3.1.4.6 Scenario 5 – Speed Limit Variations 

In Scenario 5, three simulation models are used to investigate the effects of three speed limits. All 

models are based on the Scenario 1 model, with the only difference being the speed limit. In each of the 

three models of Scenario 5, all speed limits are set at 50, 60, or 70 km/hr.  

3.1.4.7 Scenario 6 – Detector Location Variations 

Scenario 6 is not performed in its own separate model; rather, it involves performing the trajectory 

reconstruction using detector data from detectors at different positions. All of the simulation models 

have multiple advance detectors as described in section 3.1.3. The trajectory reconstruction is 

performed using advance detection from the detectors at a 25m setback from the stop-line detectors, 

then 50m, 75m, and 100m.  
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3.2 Trajectory Reconstruction 

As discussed in literature review, one of the key factors affecting the amount of emissions that could be 

generated by a vehicle is its motion patterns such as acceleration, braking and cruising.  As a result, in 

order to accurately estimate traffic emissions, an ideal approach would be one that can accurately 

reconstruct the trajectories of individual vehicles in a traffic stream based on the available sensor data.  

In this research, we assume that the available data consists of vehicle presence detection at specified 

locations and signal timing records. The detection of the same vehicle at multiple locations is assumed 

to be associated; thus, repeated detections are known. Furthermore, it is assumed that the detection 

technology can roughly classify the vehicle type. This data alone is insufficient for microscopic emission 

modelling, as microscopic emission modelling requires higher resolution data, such as instantaneous 

vehicle speed and acceleration at small time intervals. Thus, a reasonable approach would be 

reconstructing the vehicle trajectories using known information from the detectors. 

There are various levels of detail at which the trajectories can be reconstructed, each having 

repercussions for the emission estimates generated using them. In the reconstruction method 

presented here, vehicle acceleration and deceleration functions and car-following principles are used. 

The acceleration and deceleration functions, found in the literature, were empirically developed 

(Bogdanović & Ruškić, 2013; Kumar Maurya & Bokare, 2012). The car-following principles came from 

Newell’s car-following model (Treiber & Kesting, 2013). This reconstruction process can be seen as an 

effort to fill in the missing information of vehicle trajectories between detections.  

An alternative method that assumes constant average speed between detectors was also explored. To 

interpolate the average speeds, signal timing information is not required. This alternative is much 

simpler and faster, but the estimation errors are expected to be greater. However, depending on the 

purpose at hand, it may be appropriate.  

3.2.1 Trajectory Reconstruction using Acceleration  

The first proposed trajectory reconstruction method is based on the general motion patterns of vehicles 

and their car-following behaviour when approaching an intersection, as conceptually illustrated in Figure 

13.  It first segments each trajectory into stretches of acceleration, deceleration, cruising, and idling 

based on detections.  The method involves performing a set of algorithms on the data from a platoon of 

vehicles passing through one intersection approach during one signal cycle. The required information 

includes presence detection and the signal timing for the cycle of interest. The locations of detectors, as 

previous explained in section 3.1.3, are at an advance location upstream from the intersection, the stop-

line of the intersection approach, the stopping point on a left- or right-turn curve, and the point of exit 

at the end of the intersection. 
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Figure 13: Conceptual Illustration of Vehicle Trajectory Reconstruction with Acceleration 

 

Figure 14 and Figure 15 show the overall process for the proposed trajectory reconstruction method. 

The reconstruction method outlined in Figure 14 is performed for all vehicles passing through the stop-

line of each thru movement lane, while Figure 15 applies to left-turn lanes. The thru movement lanes 

are processed before the left-turn lanes. The two processes shown are similar, except that for the left 

turn lanes it accounts for more instances of possible stops during the turn. Differences in Figure 15 are 

coloured in red. This is due to the possibility of having permissive left-turn phases without any protected 

left-turn phase in the cycle, which can happen if the protected phase is not actuated. This is different 

from right-turn lanes in the major direction, which are shared with thru lanes in the major direction and 

will always have a protected phase in each cycle. At the end of the algorithm, complete trajectories from 

the exit of the upstream intersection to the exit of the current intersection are constructed. Another 

difference is that the cruise speed is found using thru-movement vehicles, which is omitted in the left-

turn reconstruction process.  

Detailed formulations of the individual components in the flowcharts are provided in sections 3.2.1.1 to 

0. Some general patterns about the nomenclature used in the formulation are listed below. 

𝑡   denotes a point in time 

𝑇   denotes a duration of time 

𝑥   denotes a position in space 

𝑙   denotes a length of distance 

𝑎𝑑𝑣,𝑠𝑡𝑜𝑝,𝑡𝑢𝑟𝑛,𝑒𝑥𝑖𝑡 are used as subscripts pertaining to the advance, stop-line, turning, and 

exit detectors respectively 

x 

t 

Trajectory Offset According 
to Car-following Model 

Deceleration 
Curve 

Acceleration 
Curve 

Signal Timing 

Exit Detection 

Stop-Line Detection 

Advance Detection 
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𝑛   pertains to a certain vehicle 

𝑛 − 1   pertains to the vehicle preceding vehicle 𝑛 in the platoon 

𝑖    pertains to a time step 

1,2   denotes the beginning and end times of a vehicle detection 
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Figure 14: Trajectory Reconstruction Method Overview for Thru Movement Lanes 

For the lead vehicle: 
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Figure 15: Trajectory Reconstruction Method Overview for Left-Turn Movements 

For the lead vehicle: 

Fit deceleration and acceleration curves. 

If it stopped at both the stop-line and in the 

left-turn, linearly interpolate an average speed 

trajectory between the stops. 
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Assume constant cruise speed before and after the trajectory constructed thus far. 

Place idling curve using Newel’s 

model.  

If stopped in left-turn, linearly 

interpolate between stops. 

Approach at cruise 

speed, then follow 

with Newell’s model. 

Constant speed from 

advance to stop-line to exit 

detection. 

List all vehicles in cycle-lane platoon. 

Did the lead 

vehicle stop? 

Yes 

No 

Stopped in 

queue? 

Stopped in  

left-turn? 

Place stopped curve 

at intersection stop. 

Fit acceleration curve. 

Trajectories reconstructed. 

Followed 

closely? 

Yes 

No 

Yes 

No 

Yes 

No Fit deceleration curve. 

Stopped in  

left-turn? 
No 

Yes 

Place stopped curve 

at turning stop. 



45 
 

3.2.1.1 Determining the Cruise Speed 

To find the cruise speed, the average speeds of vehicles passing through an intersection from the stop-

line detector to the exit detector are considered. From a sample of average passing speeds, the cruise 

speed would be a high percentile of all the speeds, as vehicles in the lower speed range likely slowed 

down due to queuing. When finding the cruise speed, the sample of average passing speeds must 

incorporate vehicles that passed through in free flow. Thus, a large enough sample size is needed. 

However, in theory, the cruise speed depends on the level of congestion, which can change from cycle 

to cycle. The samples of average passing speeds should be taken from a sufficient number of cycles such 

that vehicles passing in free flow are captured, but an overly large sample could result in a cruise speed 

that is too aggregated. 

The average passing speed is found according to Equation 8, illustrated in Figure 16. 

𝑣𝑝𝑎𝑠𝑠𝑖𝑛𝑔,𝑛 =
𝑙𝑝𝑎𝑠𝑠𝑖𝑛𝑔

𝑇𝑝𝑎𝑠𝑠𝑖𝑛𝑔,𝑛
=

𝑥𝑒𝑥𝑖𝑡 − 𝑥𝑠𝑡𝑜𝑝

𝑡𝑒𝑥𝑖𝑡2,𝑛 − 𝑡𝑠𝑡𝑜𝑝2,𝑛
(8) 

where  

𝑣𝑝𝑎𝑠𝑠𝑖𝑛𝑔,𝑛 is the average speed of vehicle 𝑛 from the stop-line to the exit detector 

𝑙𝑝𝑎𝑠𝑠𝑖𝑛𝑔  is the distance between the stop-line to the exit detector 

𝑇𝑝𝑎𝑠𝑠𝑖𝑛𝑔,𝑛 is the time it took vehicle 𝑛 to travel from the stop-line to the exit detector 

𝑥𝑠𝑡𝑜𝑝, 𝑥𝑒𝑥𝑖𝑡 are the positions of the stop-line and exit detectors respectively 

𝑡𝑠𝑡𝑜𝑝2,𝑛, 𝑡𝑒𝑥𝑖𝑡2,𝑛 are the times vehicle 𝑛 left the stop-line and exit detectors respectively 

  (Subscripts 1 and 2 denote the beginning and end of a detection respectively.) 

The cruise speed was found as the 95% percentile of all thru movement passing speeds in the current 

intersection approach for the past 𝑚𝑙𝑐 lane-cycle platoons, as in Equation 9. A value of It was found that 

the value of 𝑚𝑙𝑐does not have a great impact on the overall performance.  

𝑣𝑐𝑟𝑢𝑖𝑠𝑒 = 𝑃%𝑐𝑟𝑢𝑖𝑠𝑒{𝑣𝑝𝑎𝑠𝑠𝑖𝑛𝑔,𝑛 | 𝑛 ∈ 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑚𝑙𝑐  𝑙𝑎𝑛𝑒 − 𝑐𝑦𝑐𝑙𝑒𝑠} (9) 

where 

 %𝑐𝑟𝑢𝑖𝑠𝑒 is the percentile of passing speeds to be considered the cruise speed 

𝑣𝑐𝑟𝑢𝑖𝑠𝑒 is the determined cruise speed 

𝑚𝑙𝑐 is the number of lane-cycle vehicle groups to sample 

Values of %𝑐𝑟𝑢𝑖𝑠𝑒 = 95 and 𝑚𝑙𝑐 = 10 were used. 



46 
 

 

Figure 16: Finding the Cruise Speed 

 

3.2.1.2 Decision Conditions 

The process for making the decisions in the flow charts in Figure 14 and Figure 15 are explained in this 

section.  

Did the lead vehicle stop? 

Lead vehicles are identified as the first vehicle to pass through a stop-line after a green phase begins. For 

a detected lead vehicle 𝑛 (𝑛 = 1), it is easy to determine if the vehicle has arrived in the red interval 

and thus stopped at the stop-line.  This can be done by checking if the passing time of the vehicle over 

the stop-line detector is over a specific threshold, 𝑇𝑠𝑡𝑜𝑝,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

Did a follower vehicle stop in queue? 

For follower vehicles, whether they came to a complete stop in the queue is determined by the 

approach speed of the vehicle over the distance from the advance to stop-line detector. If this speed is 

sufficiently less than the cruising speed, the vehicle is considered to have come to a full stop. This is 

checked using Equation 10 and illustrated in Figure 17. 

𝑣𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ,𝑛 =
𝑙𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

𝑇𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ,𝑛
=

𝑥𝑠𝑡𝑜𝑝 − 𝑥𝑎𝑑𝑣

𝑡𝑠𝑡𝑜𝑝2,𝑛 − 𝑡𝑎𝑑𝑣2,𝑛
(10) 

If 𝑣𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ < 𝑝𝑠𝑡𝑜𝑝−𝑐𝑟𝑢𝑖𝑠𝑒 × 𝑣𝑐𝑟𝑢𝑖𝑠𝑒, the vehicle idled in queue. 

x 

t 

…2 …3 …4 𝑣𝑝𝑎𝑠𝑠𝑖𝑛𝑔,1 
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where  

𝑣𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ,𝑛 is the average approach speed of vehicle 𝑛 from the advance to the stop-line 

detector 

𝑙𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ is the distance between the advance and stop-line detectors 

𝑇𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ,𝑛 is the time it took vehicle 𝑛 to travel from the advance to the stop-line detector 

𝑥𝑠𝑡𝑜𝑝, 𝑥𝑎𝑑𝑣 is the positions of the stop-line and advance detectors respectively 

𝑡𝑠𝑡𝑜𝑝2,𝑛, 𝑡𝑎𝑑𝑣2,𝑛 is the time vehicle 𝑛 left the stop-line and advance detectors respectively 

𝑝𝑠𝑡𝑜𝑝,𝑐𝑟𝑢𝑖𝑠𝑒 is the threshold fraction of the cruise speed that the average speeds of vehicles 

cannot exceed if they had stopped. A value of 𝑝𝑠𝑡𝑜𝑝,𝑐𝑟𝑢𝑖𝑠𝑒 = 0.5 was used. 

 

 

Figure 17: Determining Whether a Vehicle Stopped While Approaching an Intersection 

 

Did a follower vehicle follow closely? 

If the vehicle was found to have not stopped in queue, then it is checked whether the vehicle was 

following the preceding vehicle closely behind when passing the stop-line. This check is performed by 

comparing the time headway between the current and preceding vehicle to a threshold time headway 

according to Equations 11 and 12, as illustrated in Figure 18. 

x 

t 

𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑝𝑠𝑡𝑜𝑝−𝑐𝑟𝑢𝑖𝑠𝑒 × 𝑣𝑐𝑟𝑢𝑖𝑠𝑒  

𝑣𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ < 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Vehicle had stopped. 

𝑣𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ > 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Vehicle had not stopped. 
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𝑇ℎ = 𝑡𝑠𝑡𝑜𝑝2,𝑛 − 𝑡𝑠𝑡𝑜𝑝2,𝑛−1 (11) 

𝐼𝑓 𝑇ℎ < 𝑇ℎ,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 → 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑 𝑐𝑙𝑜𝑠𝑒𝑙𝑦 (12) 

where  

𝑇ℎ  is the headway between the current and preceding vehicle when crossing the 

stop-line 

𝑇ℎ,𝑓𝑟𝑒𝑒  is the minimum headway for vehicles following in free-flow conditions 

𝑇ℎ,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 is the maximum time headway of vehicles discharging from a queue. A value of 

𝑇ℎ,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 1.2𝑠 was used. 

 

 

Figure 18: Determining Whether a Vehicle is Following Its Predecessor 

 

Did a vehicle stop during a turn? 

Whether a vehicle stopped during a turn is determined the same way as whether a lead vehicle stopped 

at the stop-line. If the detection of the vehicle at the turning detector lasts longer than 𝑇𝑠𝑡𝑜𝑝−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 

the vehicle is considered to have stopped there.  

x 

t 

𝑇ℎ > 𝑇ℎ,𝑓𝑟𝑒𝑒 

Not following. 

𝑇ℎ < 𝑇ℎ,𝑓𝑟𝑒𝑒 

Following. 
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3.2.1.3 Newell’s Car-Following Model 

Newell’s model was chosen to model the car-following behaviour in this method because of its simplicity 

(Treiber & Kesting, 2013). It was also shown to be able to generate adequate emission estimates despite 

its simple form (Vieira da Rocha et al., 2015). In Newell’s model, the follower is assumed to always 

maintain a constant time and distance offset from the preceding vehicle. The distance offset is referred 

to as the effective length of the preceding vehicle, 𝑙𝑒𝑓𝑓. The effective length depends on the vehicle 

length and following distance. In this research, a vehicle length is set for each vehicle class considered, 

based on the vehicle properties in Vissim, listed in Table 5. To find the time offset, find 𝑖 such that 

Equations 13 and 14 are satisfied. 

𝑥𝑖,𝑛−1 ≈ 𝑥𝑠𝑡𝑜𝑝 + 𝑙𝑒𝑓𝑓,𝑛−1 (13) 

𝑇𝑁 = 𝑡𝑖,𝑛−1 − 𝑡𝑠𝑡𝑜𝑝2,𝑛 (14) 

where  

𝑙𝑒𝑓𝑓,𝑛−1  is the effective length of vehicle 𝑛 − 1  

𝑇𝑁  is the time offset  

Newell’s model is used to determine the idling position and idling end-time of vehicles in queue. For 

vehicle 𝑛, the 𝑥 and 𝑡 coordinates of the start of the idling curve is found according to Equations 15 and 

16, as illustrated in Figure 19. 

𝑡𝑠𝑡𝑜𝑝2,𝑛 = 𝑡𝑠𝑡𝑜𝑝2,𝑛−1 + 𝑇𝑁 (15) 

𝑥𝑠𝑡𝑜𝑝,𝑛 = 𝑥𝑠𝑡𝑜𝑝,𝑛−1 − 𝑙𝑒𝑓𝑓,𝑛−1 (16) 
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Figure 19: Newell's Car-Following Model 

 

Table 5: Effective Vehicle Lengths for Newell's Car-Following Model 

Vehicle Type Effective Vehicle Length 𝒍𝒆𝒇𝒇 [m] 

Passenger Car 5.5 

Single Unit Truck 11.5 

Combination Truck 13.5 

Transit But 13 

 

3.2.1.4 Modelling Following Motions 

In the case where a vehicle is found to have followed closely, the following formulation is used. 

Typically, the vehicle would approach the intersection in a free-flow cruising mode but begin to follow 

closely once it is near the preceding vehicle. The cruise portion of the trajectory is described in 

Equations (17-18) and the car-following portion is described in Equations (19-22). 

𝑡𝑖 = 𝑡𝑖−1 + 𝑑𝑡 (17) 

x 

t 

𝑇𝑁 

𝒍𝒆𝒇𝒇 
𝒍𝒆𝒇𝒇 

𝑇𝑁 
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𝑥𝑖 = 𝑥𝑖−1 + 𝑣𝑐𝑟𝑢𝑖𝑠𝑒𝑑𝑡 (18) 

 

𝑓𝑜𝑟 𝑖 = {1,2, … 𝑘} 𝑢𝑛𝑡𝑖𝑙 {

𝑡𝑘+1,𝑛 < 𝑡𝑖,𝑛−1 + 𝑇𝑁

𝑎𝑛𝑑 
𝑥𝑘+1,𝑛 > 𝑥𝑖,𝑛−1 − 𝑙𝑒𝑓𝑓,𝑛−1

}  

Then, 

𝑡𝑖,𝑛 = 𝑡𝑖,𝑛−1 + 𝑇𝑁 (19) 

𝑥𝑖,𝑛 = 𝑥𝑖,𝑛−1 − 𝑙𝑒𝑓𝑓,𝑛−1 (20) 

𝑣𝑖,𝑛 = 𝑣𝑖,𝑛−1 (21) 

 

𝑎𝑖,𝑛 = 𝑎𝑖,𝑛−1 (22) 

where  

𝑖  denotes a time-step 

𝑛  denotes the current vehicle 

𝑛 − 1  denotes the preceding vehicle 

𝑡𝑖  is the time at time-step 𝑖 

𝑥𝑖, 𝑣𝑖 , 𝑎𝑖 are the position, speed, and acceleration of the vehicle at 𝑡𝑖 

𝑑𝑡  is the time-step increment. A value of 𝑑𝑡 = 1𝑠 was used. 

 

3.2.1.5 Modelling Deceleration Motions 

As indicated in Figure 14 and Figure 15, the deceleration motion of a vehicle is modelled if it is 

determined to have come to a complete stop. A deceleration curve is defined by its startpoint, endpoint, 

and a curve function. The startpoint and endpoint are both defined by a time and position coordinate. 

The curve function used is an empirical function calibrated in a study of the deceleration behaviours of 

vehicles at an intersection (Kumar Maurya & Bokare, 2012). Kinematic relationships are used to 

determine related factors.  

When the endpoint time and position of the deceleration curve are specified, such as for a lead vehicle 

detected to have stopped at the stop-line, the following process is used to fit a deceleration curve: 
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Consider a continuous set of 𝑘 time intervals of step size 𝑑𝑡 over the segment of deceleration with an 

initial speed of 𝑣0  =  𝑣𝑐𝑟𝑢𝑖𝑠𝑒 and an initial acceleration rate of 𝑎0  =  0 at 𝑡0  =  0.  For time interval 

𝑖 (𝑖 = 1,2, … 𝑘), Equations 23-26 define the deceleration curve. 

−𝑎𝑖 = −𝑘3𝑣𝑖−1
2 + 𝑘4𝑣𝑖−1 + 𝑘5 (23) 

𝑣𝑖 = 𝑣𝑖−1 +
𝑎𝑖 + 𝑎𝑖−1

2
𝑑𝑡 (24) 

𝑥𝑖 = 𝑥𝑖−1 +
𝑣𝑖 + 𝑣𝑖−1

2
𝑑𝑡 (25) 

𝑡𝑖 = 𝑡𝑖−1 + 𝑑𝑡 (26) 

𝑓𝑜𝑟 𝑖 = {1,2, … 𝑘} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑣𝑘 = 0 

where  

𝑖  denotes a time-step 

𝑡𝑖  is the time at time-step 𝑖 

𝑥𝑖, 𝑣𝑖 , 𝑎𝑖 are the position, speed, and acceleration of the vehicle at 𝑡𝑖 

𝑘3, 𝑘4, 𝑘5  are empirically calibrated parameters (Kumar Maurya & Bokare, 2012) 

𝑑𝑡  is the time-step increment. A value of 𝑑𝑡 = 1𝑠 was used. 

To match the end of the deceleration curve to the beginning of the stopped curve: 

Shift 𝑥𝑖 so that 𝑥𝑖 → 𝑥𝑖 + 𝑥𝑠𝑡𝑜𝑝 − 𝑥𝑘, and 

Shift 𝑡𝑖 so that  𝑡𝑖 → 𝑡𝑖 + 𝑡𝑠𝑡𝑜𝑝1 − 𝑡𝑘 + 𝑡𝑙𝑎𝑔,𝑠𝑡𝑜𝑝  

𝑡𝑙𝑎𝑔,𝑠𝑡𝑜𝑝  is introduced to account for the time a vehicle is already detected at the stop-

line but has not come to a complete stop. 𝑡𝑙𝑎𝑔,𝑠𝑡𝑜𝑝 = 2𝑠 was used. 

𝑥𝑠𝑡𝑜𝑝 is the position of the stop-line detector. It is replaced by 𝑥𝑡𝑢𝑟𝑛 for cases where 

the vehicle stopped during a turn without stopping at the stop-line 

𝑡𝑠𝑡𝑜𝑝1 is the time the vehicle left the stop-line detector. It is replaced by 𝑡𝑡𝑢𝑟𝑛1 for 

cases where the vehicle stopped during a turn without stopping at the stop-line 

Then adjust the deceleration curve so that it matches the advance detection, as illustrated in Figure 20. 

If 𝑥0 > 𝑥𝑎𝑑𝑣 , then extrapolate the trajectory by cruise speed to the advance detector position 

according to Equations 27-30 
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𝑇𝑐𝑟𝑢𝑖𝑠𝑒 =
𝑥0 − 𝑥𝑎𝑑𝑣

𝑣𝑐𝑟𝑢𝑖𝑠𝑒

(27) 

𝑡𝑎𝑑𝑣
′ = 𝑡0 − 𝑇𝑐𝑟𝑢𝑖𝑠𝑒 (28) 

𝑇𝑜𝑓𝑓 = 𝑡𝑎𝑑𝑣1 − 𝑡𝑎𝑑𝑣
′ (29) 

If 𝑥0 < 𝑥𝑎𝑑𝑣 , then find 𝑖 where 𝑥𝑖 is closest to 𝑥𝑎𝑑𝑣  

𝑇𝑜𝑓𝑓 = 𝑡𝑎𝑑𝑣1 − 𝑡𝑖 (30) 

where  

𝑇𝑐𝑟𝑢𝑖𝑠𝑒  is the time spent cruising from the advance detector before decelerating 

𝑡𝑎𝑑𝑣
′   is the extrapolated time of being at the advance detector 

𝑇𝑜𝑓𝑓  is the difference between the detected time at the advance detector and the 

time in the trajectory reconstructed so far 

If 𝑇𝑜𝑓𝑓 > 0, decrease 𝑘3 and increase 𝑘4, 𝑘5 by a proportion 𝑝𝑎𝑑𝑗. 

If 𝑇𝑜𝑓𝑓 < 0, increase 𝑘3 and decrease 𝑘4, 𝑘5 by a proportion 𝑝𝑎𝑑𝑗. 

 

Values of 𝑝𝑎𝑑𝑗 = 0.05𝑠 and 𝑇𝑜𝑓𝑓 were used. Note that lower values of 𝑇𝑜𝑓𝑓 generate more accurate 

trajectories but require significantly more computation effort. Plus, the value of  𝑝𝑎𝑑𝑗 must be small 

enough that the trajectory can be fitted with  𝑇𝑜𝑓𝑓 of the detections.  

This section is repeated until 𝑇𝑜𝑓𝑓 < 𝑇𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, where 𝑇𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 is the acceptable discrepancy between 

the detected time and reconstructed trajectory time.  

In some cases, the endpoint position is specified but the time is not, such as for a follower vehicle idling 

in a queue. Its position in the queue can be found, but its time of entering the queue is not detected. In 

such cases, a previously modelled deceleration curve is used. The position of the curve is shifted so that 

the endpoint position of the deceleration curve matches the specified idling position. The time of the 

curve is shifted so that it matches the advance detection of that vehicle. 
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Figure 20: Fitting Deceleration Curves 

 

3.2.1.6 Modelling Acceleration Motions 

The modelling of acceleration motions is performed to that of deceleration motions. The acceleration 

curves are modelled according to Equation 31 as a sequential process using a set of kinematic equations 

similar to those for the deceleration process (Equations 24-26). 

Let 𝑣0 = 𝑣𝑐𝑟𝑢𝑖𝑠𝑒 , 𝑎0 = 0, 𝑥0 = 0, 𝑎𝑛𝑑 𝑡0 = 0 

𝑎𝑖 = 𝛽0 + 𝛽1𝑣𝑖−1 (31) 

𝑣𝑖 = 𝑣𝑖−1 +
𝑎𝑖 + 𝑎𝑖−1

2
𝑑𝑡 (24) 

𝑥𝑖 = 𝑥𝑖−1 +
𝑣𝑖 + 𝑣𝑖−1

2
𝑑𝑡 (25) 

𝑡𝑖 = 𝑡𝑖−1 + 𝑑𝑡 (26) 

𝑓𝑜𝑟 𝑖 = {1,2, … 𝑘} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑣𝑘 = 𝑣𝑐𝑟𝑢𝑖𝑠𝑒 

x 

t 

Deceleration Curve 

Adjustments 
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where  

𝛽0, 𝛽1  are empirically calibrated parameters (Y. Zhang et al., 2013) 

To match the end of the stopped curve to the beginning of the acceleration curve: 

Shift 𝑥𝑖 so that 𝑥𝑖 → 𝑥𝑖 + 𝑥𝑠𝑡𝑜𝑝, and 

Shift 𝑡𝑖 so that  𝑡𝑖 → 𝑡𝑖 + 𝑡𝑠𝑡𝑜𝑝2 − 𝑡𝑙𝑎𝑔,𝑠𝑡𝑎𝑟𝑡 

𝑡𝑙𝑎𝑔,𝑠𝑡𝑎𝑟𝑡 is introduced to account for the time a vehicle is detected at the stop-line but 

has already begun accelerating. 𝑡𝑙𝑎𝑔,𝑠𝑡𝑎𝑟𝑡 = 2𝑠 was used. 

𝑥𝑠𝑡𝑜𝑝 is the position of the stop-line detector. It is replaced with 𝑥𝑡𝑢𝑟𝑛 for cases where 

the vehicle accelerated from stopping during a turn 

𝑡𝑠𝑡𝑜𝑝2 is the time the vehicle leaves the stop-line detector. It is replaced with 𝑡𝑡𝑢𝑟𝑛2 for 

cases where the vehicle accelerated from stopping during a turn 

Then adjust the acceleration curve so that it matches the exit detection, as illustrated in Figure 21. 

If 𝑥𝑘 < 𝑥𝑒𝑥𝑖𝑡 , then extrapolate the trajectory by cruise speed to the exit detector position 

according to Equations 32-35. 

𝑇𝑐𝑟𝑢𝑖𝑠𝑒 =
𝑥𝑒𝑥𝑖𝑡 − 𝑥𝑘

𝑣𝑐𝑟𝑢𝑖𝑠𝑒

(32) 

𝑡𝑒𝑥𝑖𝑡
′ = 𝑡𝑘 + 𝑇𝑐𝑟𝑢𝑖𝑠𝑒 (33) 

𝑇𝑜𝑓𝑓 = 𝑡𝑒𝑥𝑖𝑡2 − 𝑡𝑒𝑥𝑖𝑡
′ (34) 

If 𝑥0 < 𝑥𝑎𝑑𝑣 , then find 𝑖 where 𝑥𝑖 is closest to 𝑥𝑎𝑑𝑣  

𝑇𝑜𝑓𝑓 = 𝑡𝑒𝑥𝑖𝑡2 − 𝑡𝑖 (35) 

where  

𝑇𝑐𝑟𝑢𝑖𝑠𝑒  is the time spent cruising from the advance detector before decelerating 

𝑡𝑒𝑥𝑖𝑡
′   is the extrapolated time of being at the advance detector 

𝑇𝑜𝑓𝑓  is the difference between the detected time at the advance detector and the 

time in the trajectory reconstructed so far 

If 𝑇𝑜𝑓𝑓 > 0, decrease 𝛽0 and increase 𝛽1 by a proportion 𝑝𝑎𝑑𝑗. 

If 𝑇𝑜𝑓𝑓 < 0, increase 𝛽0 and decrease 𝛽1 by a proportion 𝑝𝑎𝑑𝑗. 
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The same values of 𝑝𝑎𝑑𝑗 and 𝑇𝑜𝑓𝑓 as the deceleration modelling method were used. This section is 

repeated until 𝑇𝑜𝑓𝑓 < 𝑇𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, where 𝑇𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 is the acceptable discrepancy between the detected 

time and reconstructed trajectory time.  

 

Figure 21: Fitting Acceleration Curves 

3.2.1.7 Modelling Linear Constant-Speed Motions 

This section describes the linear interpolation indicated in the flow charts. It is used between idling 

curves at the stop-line and turn detectors, and for free-flow movements between detectors. The 

formulation is the same as that in equations (3) and (4). For linear interpolation between two points in 

time and space, the kinematics properties are found using Equation 36. 

𝑣 =
𝑥𝑓 − 𝑥𝑠

𝑡𝑓 − 𝑡𝑠

(36) 

where 

 𝑣 is the constant speed between the points 

 𝑥𝑓 , 𝑥𝑠 are the positions of the end and start points respectively 

 𝑡𝑓 , 𝑡𝑠 are the points in time for the end and start points respectively 
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In the case of interpolating between two idling curves, the end of the first curve is the startpoint and the 

beginning of the second curve is the endpoint of the interpolated segment. In the case of free-flow 

movement through the intersection, this interpolation formulation is applied with the advance 

detection as the startpoint and the stop-line detection as the endpoint, then with the stop-line 

detection as the startpoint and the exit detection as the endpoint.  

3.2.2 Trajectory Reconstruction Using Average Speed Interpolation 

A simpler method is investigated where the vehicle trajectories are linearly interpolated between the 

detections. The detected idling curves are taken as is. Between detections, the trajectory is interpolated 

as an average speed trajectory, as illustrated in Figure 22. In this method, the formulation in section 0 is 

used for all spaces between detections.  

 

 

 

Figure 22: Conceptual Diagram of Trajectory Reconstruction with Linear Interpolation 

 

3.3 Emission Estimation 

The second major component of our proposed traffic emission estimation method is the simulation 

model MOVES that is used to determine the emission amounts of different types using vehicle 

trajectories – either simulated or reconstructed – as inputs.  The following section provides a detailed 

x 

t 

Signal Timing 

Exit Detection 

Stop-Line Detection 

Advance Detection 
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discussion about the MOVES model and the inputs required.  To improve the computational efficiency, a 

simplified method is lastly introduced, which could be used to calculate emission directly without the 

need to run the MOVES software.  

3.3.1 Generating Inputs for MOVES 

MOVES is a software system developed by EPA that can be used to estimate traffic generated emissions 

at various levels of scales, ranging from project level to national level.  In this research, we use MOVES 

for project level analysis.   

To generate emission estimates, the MOVES software requires a range of inputs as listed in  

Table 6. Running MOVES requires selecting a region-specific domain from its database or creating a 

custom one. Since no domains were available for Canadian regions, and creating one is an onerous task, 

MOVES was run using the Erie County domain.   

With these inputs, MOVES is used to generate emission estimates disaggregated by vehicle type, 

pollutant, and pollutant process. Further disaggregation is enabled by disaggregating the input data 

prior to feeding it into MOVES using unique link numbers, as explained in section 3.3.1.3. The emission 

estimates are aggregated over the vehicles crossing the stop-line in one lane of one intersection 

approach during one signal cycle.  

Table 6: MOVES Input Tables and Sources of Information 

Input Table Source of Information Notes Regarding Input Table Creation 

Age Distribution 

Statistics Canada 

(Statistics Canada, 

2009) 

Available data was extrapolated for unavailable 

data 

Fuel Supply 

Default MOVES 

database for Erie 

County, New York 

Available information from the closest region 

was used. 

Fuel Usage Fraction 

Alternative Vehicle Fuel 

Technology 

Fuel Formulation 

Meteorology 
Open online archives 

(Thorsen, 2018) 

Temperature and pressure for Cambridge was 

found for each hour of the day 

Links 

Vissim simulation 

The vehicle records from the simulation output 

provides second-by-second vehicle profiles 

including speed, acceleration, vehicle type, and 

their place in the network. 

Link Source Types 

Operating Mode 

Distribution 
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3.3.1.1 Local Regional Data – Vehicle Age Distribution and Meteorology 

Where available, data for the local context was used, such as vehicle age distributions from Statistics 

Canada (Statistics Canada, 2009) and meteorological data from open sources (Thorsen, 2018). It was 

assumed that the current age distribution of vehicles is not significantly different from the time of the 

data. MOVES accepts age distributions spanning a 30-year range, but data only provided a distribution 

spanning less than 20 years, so the remaining years’ distribution were extrapolated, as shown in 

Appendix F – Vehicle Age Distribution Extrapolation. The meteorological data, i.e. temperature and 

relative humidity, were specified on an hourly basis for the city of Cambridge, Ontario.  

3.3.1.2 Default Data Provided in MOVES – Fuel Information 

For the Fuel Supply, Fuel Usage Fraction, Alternative Vehicle Fuel Technology, and Fuel Formulation 

input tables, the default data included in the MOVES software for Erie County was used, as it is the 

closest U.S. county to Cambridge. This data was not easily obtainable. Moreover, it does not significantly 

impact the method of emission monitoring developed in this research. 

3.3.1.3 Vehicle Activities – Links, Link Source Types, Operating Mode Distribution 

In addition to the inputs on vehicle age distribution, meteorology, and fuel information, the last set of 

inputs to MOVES is related to vehicle operations including Links, Link Source Types, and Operating Mode 

Distribution, which concern the activities of the vehicles generating the emissions. When estimating 

emissions for the purpose of traffic management, these inputs are the most important. The format for 

these input tables are generated according to the templates created by MOVES and following the Input 

Guidelines for Motor Vehicle Emissions Simulator Model, Volume 2: Practitioners' Handbook: Project 

Level Inputs (Porter et al., 2015). When generating the input templates with MOVES, the user must 

select pollutants, processes, vehicle types, and fuels of interest to include in the MOVES run outputs. 

The pollutants selected were CO2, N2O, CH4, and any prerequisite pollutants for estimating those 

pollutants as determined by MOVES in the selection interface, which were Total Energy Consumption 

and Total Gaseous Hydrocarbons. The processes selected were running exhaust and crank-case exhaust, 

which occur during on-road driving. The vehicle types selected were Passenger Cars, Single Unit Short-

Haul Trucks, Combination Short-Haul Trucks, and Transit Buses. The fuels selected were Gasoline and 

Diesel Fuel. Only the Urban Unrestricted road type is used.  The follow section provides a detailed 

description of these input tables. 

Links Table 

Table 7 is an example of part of a Links input table. In a Links table, one tuple is required for each “link”, 

identified with a user-specified linkID value. A “link” is how inputs are disaggregated in MOVES and 

outputs are disaggregated correspondingly. As such, the linkID can be used as an abstract property to 

disaggregate input and output data. It can represent an actual link in the traffic network or any 

disaggregated portion of the input traffic activity. In this research, the linkID was used to differentiate 

between vehicle activities approaching different intersections from different directions, which lane they 
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passed the stop-line in, what turning movement they made, and which cycle they passed the stop-line 

in. For example, in a linkID of 21634: the 2 indicates an approach – Dunbar southbound; the 1 indicates 

second lane from the right (counts begin at 0); the 634, being greater than 500, indicates a left turn 

movement; and 634-500=134 indicates the 134th signal cycle of the dataset. This convention was 

developed before the real-time emission calculation method, when MOVES runs were required, which 

only allows a maximum of 5 digits in the linkID. The countyID, zoneID, and roadTypeID are values 

corresponding with settings chosen for the MOVES run and are held constant in this research. The 

linkLength values correspond with the distance vehicles travel in the individual “link”. The linkVolume is 

the number of vehicles traversing the link in the time period of concern. The linkAvgSpeed is the speed 

of all vehicles in the “link” averaged over the time and distance of concern. It is not used if the Operating 

Mode Distribution table is provided. The linkDescription is an optional field. The linkAvgGrade, the 

average grade across the “link”, is held at 0 for simplicity, as it does not affect the methodology 

developed in this research.  

Table 7: Links Input Table Example 
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10001 36029 360290 5 171.604 2 36.79739757  
 

11001 36029 360290 5 171.604 2 26.49264088  
 

10002 36029 360290 5 171.604 2 30.24914179  
 

11002 36029 360290 5 171.604 2 37.64627249  
 

10502 36029 360290 5 171.604 1 35.2919002  
 

10003 36029 360290 5 171.604 1 38.19702487  
 

… … … … … … …   

 

Link Source Types Table 

Table 8 is an example of part of a Link Source Types input table. “Source Type” refers to the type of 

vehicle that is the source of emissions. A tuple is required for vehicle type – specified by the 

sourceTypeID – on each “link” – specified with the linkID. The sourceTypeHourFraction is a decimal 

fraction indicating what proportion of vehicular travel time on a “link” is contributed by a particular 

source type. The fractions of all source types on any “link” must add up to 1.  
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Table 8: Link Source Types Input Table Example 

linkID sourceTypeID sourceTypeHourFraction 

10001 21 1 

11001 52 0.66666667 

11001 21 0.33333333 

10002 21 1 

… … … 

 

Operating Mode Distribution Table 

The Operating Mode Distribution (OMD) is an optional input table for MOVES available at the project 

level. It provides the traffic activity data at the highest level of detail available for MOVES inputs. In the 

OMD, a tuple is required for each source type, link, pollutant process, and operating mode combination. 

That is, for each pollutant process of each vehicle type on each link, there must be a tuple for each of 

the operating modes. Table 9 shows part of an OMD table for a single vehicle type on a single link for a 

single pollutant process across all operating modes. The pollutants and processes of interest are 

identified by a single polProcessID. The required polProcessID’s were identified by having MOVES 

generate an OMD template after selecting the pollutants and processes of interest mentioned earlier in 

this section.  
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Table 9: Operating Mode Distribution Input Table Example 

sourceTypeID hourDayID linkID polProcessID opModeID opModeFraction 

21 85 10001 101 0 0.19047619 

21 85 10001 101 1 0 

21 85 10001 101 11 0 

21 85 10001 101 12 0 

21 85 10001 101 13 0 

21 85 10001 101 14 0 

21 85 10001 101 15 0 

21 85 10001 101 16 0 

21 85 10001 101 21 0 

21 85 10001 101 22 0.04761905 

21 85 10001 101 23 0.42857143 

21 85 10001 101 24 0.0952381 

21 85 10001 101 25 0.0952381 

21 85 10001 101 27 0 

21 85 10001 101 28 0.14285714 

21 85 10001 101 29 0 

21 85 10001 101 30 0 

21 85 10001 101 33 0 

21 85 10001 101 35 0 

21 85 10001 101 37 0 

21 85 10001 101 38 0 

21 85 10001 101 39 0 

21 85 10001 101 40 0 

… … … … … … 

 

The operating mode is a categorization of vehicle activity by speed, Vehicle Specific Power (VSP), and 

acceleration. The operating mode bins relevant to this research and their corresponding boundary 

conditions as provided by the MOVES software are in Appendix A – Operating Mode Bins. The bin 

boundary conditions were in the template generated by MOVES. The opModeFraction is the fraction of 

time spent in one operating mode by all the vehicles of one type on one link. These fractions must be 

repeated for each pollutant process of interest. Vehicle Specific Power is a measure of the power 

consumption of a vehicle at an instantaneous moment. It is a function of the vehicle’s instantaneous 

speed and acceleration, vehicle mass, mechanical coefficients, and road grade, as described in equation 

(2). Parameter for the function are provided in the report Population and Activity of On-road Vehicles in 

MOVES2014 (U.S. Environmental Protection Agency, 2016b). 

A modified version of this function is provided by the report for heavy duty vehicles. The coefficients A, 

B, C, and vehicle mass M for various types are also provided in this report. The vehicle speed and 
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acceleration come from the Vissim simulation or trajectory reconstruction. Although road grade has 

been ignored in this research process, it can be easily accounted for in the VSP if it is known.  

To calculate the amount of vehicle-time spent in each VSP and speed bin, individual vehicle data at one-

second intervals are used. In the case of using the originally simulated vehicle trajectories, vehicle 

records are output at one-second intervals. In the case of using the reconstructed trajectories, 

trajectories are reconstructed or discretized into one-second interval datapoints. The operating mode 

fraction for a single link, vehicle type, and pollutant process is then found according to Equation 37. 

𝐹𝑜𝑝𝑀𝑜𝑑𝑒,𝑡𝑦𝑝𝑒,𝑙𝑖𝑛𝑘 =
∑𝑇𝑜𝑝𝑀𝑜𝑑𝑒,𝑡𝑦𝑝𝑒,𝑙𝑖𝑛𝑘

∑𝑇𝑡𝑦𝑝𝑒,𝑙𝑖𝑛𝑘

(37) 

where  

F  is the operating mode fraction 

T  is the collective driving time of all vehicles 

opMode pertains to a specific operating mode 

type  pertains to a vehicle type 

link  pertains to a “link” or input disaggregation 

The operating mode fractions for a set of operating modes is repeated for all pollutant processes, aside 

from the running exhaust of CH4 and N2O, which are not split into operating modes. The fractions of all 

operating modes for each link, vehicle type, and pollutant process combination must add up to 1.  

3.3.2 Real-Time Emission Estimation 

Running the MOVES software to calculate emissions is by no means a real-time calculation method, 

especially when the dataset is large. Aside from navigating the interface, the run itself involves a 

complex algorithm with some processes requiring multiple iterations.  For example, in order to gain a 

full understanding of the inner working of the MOVES system, an attempt was made to visualize the 

whole MOVES algorithm in detail with the processes relevant to the three greenhouse gasses of interest, 

as described in the MOVES documentation (U.S. Environmental Protection Agency, 2015). The effort was 

abandoned due to its complexity, as evident in the partial visualization shown in Appendix G – Partial 

Visualization of the MOVES Algorithm. 

A simplified approach is therefore developed to replicate the main functions of the MOVES software 

without running the software directly.  The basic idea is to categorize each of the individual inputs to the 

MOVES system (i.e., emission influencing factors), create combinations based on the categories of all 

inputs, and then determine the emission rate for each combination.  For example, in this research, we 

consider three main emission influencing factors including Traffic Volume (𝑞), Vehicle Types (𝑡𝑦𝑝𝑒) and 
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Operating Mode (𝑜𝑝𝑀𝑜𝑑𝑒), the total emission that are expected to be generated by a given type of 

traffic/vehicle on a given link (𝑙𝑖𝑛𝑘) can be estimated according to Equation 38.  

𝐸𝑡𝑦𝑝𝑒,𝑝𝑝,𝑙𝑖𝑛𝑘 =  ∑(𝐹𝑜𝑝𝑀𝑜𝑑𝑒,𝑡𝑦𝑝𝑒,𝑙𝑖𝑛𝑘𝑅𝑜𝑝𝑀𝑜𝑑𝑒,𝑡𝑦𝑝𝑒,𝑝𝑝)𝑞𝑡𝑦𝑝𝑒,𝑙𝑖𝑛𝑘 (38) 

where 

type  pertains to a vehicle type 

opMode pertains to an operating mode 

link  pertains to a “link” or input disaggregation 

pp  pertains to a pollutant process 

Etype, pp, link is the emission quantity estimated for a given type of vehicles, on a given link 

for a given pollutant process [g] 

FopMode, type, link is the proportion of motions that are in a given operating mode 

RopMode, Type is the unit emission rate [g/veh/hr] 

Qtype, link  is the total volume of vehicle type on link [veh/hr] 

 

It should be noted that MOVES includes a large number of factors as shown in Figure 18.  If all of these 

factors are considered in classification, it would result into an unmanageable number of combinations.  

Fortunately, many of these factors in MOVES can be held constant when the scope of our analysis is 

limited to a traffic project level with short timeframes (e.g., by minutes or hours) and small spatial 

coverage (e.g., a traffic corridor or a district).  Examples of such factors include fuel type, temperature 

and humidity, and vehicle age distribution, which can all be assumed to be uniform or constant across 

alternative traffic management schemes.  To model emissions for the purpose of traffic management, 

the model should be able to differentiate between changes in emissions caused by traffic management 

strategies and those caused by external factors such as weather and changing fleets. Holding external 

factors constant in the modelling process and only being sensitive to traffic activity factors would aid the 

analysis of relationships between traffic management strategies and emissions.  As a result, similar to 

the work of Park et al. (2015), it was decided that the Volumes and Operating Mode Distribution is the 

only input that the method must be sensitive to over a small spatial-temporal scale.   
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Figure 23: Dynamic and Static Inputs for MOVES 

3.3.2.1 Generating Emission Rates for Real-Time Emission Estimation 

In the proposed simplified emission estimation method described in the previous section (Equation 38), 

the emission rates for individual classes must be available or obtained in advance. In this research, we 

obtained the estimates of these rates by feeding basic combinations of the inputs of interest into the 

MOVES software.  This method is similar to that of Xu et al. (2016), but with much fewer input 

combinations. One link was created for each vehicle type and operating mode combination, with the 

linkID being a concatenation of the vehicle type ID and operating mode ID. Thus, for 4 vehicle types and 

25 operating modes, a total of 4x25=100 links were created. For each link, the Links, Link Source Types, 

and Operating Mode Distribution tables were populated as described below.  

Input Tables 

The input tables were populated so that the unit emission rate per vehicle for each vehicle type, 

pollutant process, and operating mode would be generated by MOVES. One link must be specified for 

each vehicle type and operating mode combination. In the Links table, for each link, which represents 

one vehicle type and one operating mode, a volume of 1 is entered. In the Link Source Types table, for 

each link, the corresponding vehicle type and a source type fraction of 1 is entered. In the Operating 

Mode Distribution table, for each link, the corresponding vehicle type was specified, and an entry was 

created for each pollutant process. The opModeID was named the mode corresponding with the link 
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and a fraction of 1 was assigned. Thus, each tuple pertains to one vehicle type and one pollutant process 

operating in a single operating mode. Table 10 shows entries for vehicle type 21 for operating modes 0 

and 1. The table continues in the same pattern for the remaining operating modes, and the pattern is 

repeated for each vehicle type. For 4 vehicle classes, 23 operating modes, 3 pollutants of interest and 2 

prerequisite pollutants resulting in 6 pollutant processes, the required combinations of inputs are 

4 × 23 × 6 = 552 

This produces 552 emission rates to be used as factors in the real-time calculation.  

Table 10: Part of the Operating Mode Distribution Input Table for Generating Emission Rates 

sourceTypeID hourDayID linkID polProcessID opModeID opModeFraction 

21 85 2100 101 0 1 

21 85 2100 501 0 1 

21 85 2100 601 0 1 

21 85 2100 9001 0 1 

21 85 2100 9101 0 1 

21 85 2100 515 0 1 

21 85 2101 101 1 1 

21 85 2101 501 1 1 

21 85 2101 601 1 1 

21 85 2101 9001 1 1 

21 85 2101 9101 1 1 

21 85 2101 515 1 1 

… … … … … … 

 

The remaining input tables required for MOVES were populated with default or average values. This 

produces rates that differ by vehicle type, operating mode, and pollutant process, but all correspond 

with the same values for fuel, meteorological, and age distribution data.  

Emission Rates by Class 

The emissions estimates output by the MOVES software can be disaggregated by pollutant process and 

vehicle type. It cannot disaggregate the outputs by operating mode, but since the inputs assigned one 

operating mode per link and named the linkID’s accordingly, it is clear which emission values correspond 

with which operating mode. Table 11 shows part of the MOVES output after generating emissions rates 

to be used in real-time calculations. For example, in the first row, the emissionQuantity is the rate of 

emission for pollutant 91 (Atmospheric CO2) generated by vehicle type 61 (Combination Short-Haul 

Truck) operating in mode 40 (Cruise/Acceleration; 30<=VSP; 50<=Speed) per vehicle.  
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Table 11: Part of the MOVES Output that Generated Emission Rates 

linkID pollutantID processID sourceTypeID roadTypeID emissionQuantity 

6140 91 1 61 5 4949810000 

6139 91 1 61 5 4049850000 

6138 91 1 61 5 3149890000 

6137 91 1 61 5 2249920000 

6135 91 1 61 5 1437490000 

… … … … … … 

 

3.3.2.2 Validation of the Rate-based Method 

The proposed rate-based method was validated by performing an estimation on a set of fictional input 

tables using the MOVES software and also using the simplified rate-based method. The results for both 

methods are shown in Table 12. The results obtained from the real-time estimation method are 

practically equal to those generated using the MOVES software with errors less than 0.001%. The small 

error is likely due to the MOVES algorithm mostly consisting of multiplying various values together. Pre-

multiplying these factors should not cause a big difference in the results. The process is also much 

faster, since it only requires multiplying the input values by a few factors. A large dataset that normally 

takes hours to process can be process in a few minutes.  
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Table 12: Comparison of Real-Time Emission Estimates with MOVES Generated Emission Estimates 

linkID pollutantID processID sourceTypeID MOVES 

Generated 

Emission 

Estimates 

Real-Time 

Calculated 

Emission 

Estimates 

Error 

1 1 1 21 197.45 197.449988 -0.000006% 

1 5 1 21 24.9094 24.90937355 -0.000106% 

1 5 15 21 0.325275 0.325275389 0.000120% 

1 6 1 21 2.50384 2.50384 0.000000% 

1 90 1 21 869946 869946.51 0.000059% 

1 91 1 21 12102600000 12102596600 -0.000028% 

1 1 1 42 360.725 360.7247075 -0.000081% 

1 5 1 42 36.3234 36.323382 -0.000050% 

1 5 15 42 0.0320243 0.032024345 0.000141% 

1 6 1 42 1.86278 1.8627825 0.000134% 

1 90 1 42 3024710 3024714.295 0.000142% 

1 91 1 42 41085100000 41085116175 0.000039% 

1 1 1 52 314.313 314.312949 -0.000016% 

1 5 1 52 16.3821 16.3820951 -0.000030% 

1 5 15 52 0.068828 0.068827842 -0.000230% 

1 6 1 52 1.77858 1.77858 0.000000% 

1 90 1 52 1170130 1170135.035 0.000430% 

1 91 1 52 16012100000 16012090000 -0.000062% 

1 1 1 61 64.8381 64.838117 0.000026% 

1 5 1 61 8.54957 8.5495574 -0.000147% 

1 5 15 61 0.00483098 0.004830987 0.000145% 

1 6 1 61 0.413891 0.413891 0.000000% 

1 90 1 61 734323 734323.2245 0.000031% 

1 91 1 61 9968950000 9968948900 -0.000011% 
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Chapter 4 Results 

4.1 Example of Reconstructed Trajectories 

One of the key components of our proposed emission estimation method described previously is the 

reconstruction of vehicle trajectories based on presence detection data of individual vehicles at multiple 

locations when passing an intersection or a corridor.  As a result, our first analysis of the results from the 

simulation experiments is to compare the time-space diagrams of the vehicle trajectories from the 

reconstructed versus the original trajectories from the simulation. Figure 24 shows an example of the 

comparative trajectories in which the original simulated trajectories are shown as green lines, the 

simulated detector data is shown in pink at the positions where detection is specified, and the 

reconstructed trajectories are plotted in orange on top of the original trajectories.  The reconstructed 

trajectories were discretized into second-by-second numerical data for emission modelling. The 

discretization is plotted in black points. Each point, plotted in space and time, is associated with an 

instantaneous speed and acceleration. Further extrapolations of the trajectories beyond the detectors 

are only shown in terms of the discretized points.  

As shown in Figure 24, for most cases, the reconstructed trajectories closely resemble the originally 

simulated trajectories. However, there are cases where the reconstruction algorithm fails to identify the 

actions taken or makes the wrong assumption. There are also cases where the reconstruction algorithm 

is not able to model the vehicle behaviour as it does not fall clearly into any of the categories of driving 

behaviours modelled. Examples of these cases are circled in red. 
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Figure 24: Sample Trajectories: Original vs. Reconstructed 
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4.2 Emission Rates for Real-Time Calculations 

The second important component of our proposed method is the emission rates of different emission 

types that were generated from MOVES for real-time calculations. Emission rates are provided for each 

operating mode. Descriptions of the operating modes are provided in Table 13, summarized from the 

MOVES outputs in Appendix A – Operating Mode Bins. As shown in Figure 25, for carbon dioxide 

emissions, the rates gradually increase as VSP and speed increase. The rates are very low for braking and 

idling in comparison to other driving modes. Passenger cars emit far less carbon dioxide than the heavier 

vehicle types. On the contrary, the emission rates for nitrous oxide are constant across operating 

modes, as shown in Figure 26, and only differ by vehicle type, suggesting that they are dependent on 

factors other than speed and power. Single Unit Trucks emit far more nitrous oxide than the other 

vehicle types. For methane, different rates are required for tailpipe and crankcase emissions. Figure 27 

shows that heavy vehicles emit relatively constant rates of methane in most operating modes, with 

braking and idling modes emitting less; however, the contrast is not as stark as that of carbon dioxide. 

Passenger cars actually emit slightly more methane in the braking mode than some other modes and 

have a sharper climb in rates towards the higher VSP modes. Figure 28 shows that Single Unit Trucks and 

Passenger Cars have some of the highest rates of crankcase methane emission, especially at higher VSP 

modes. 

Table 13: Operating Mode Descriptions 
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Figure 25: Emission Rates for Carbon Dioxide due to Running Exhaust 

 

Figure 26: Emission Rates for Nitrous Oxide due to Running Exhaust 
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Figure 27: Emission Rates for Methane due to Running Exhaust 

 

Figure 28: Emission Rates for Methane due to Crankcase Running Exhaust 
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4.3 Model Evaluation and Sensitivity Analysis 

As shown in Error! Reference source not found. in the previous section, the MOVES rates generated w

ere able to produce emission estimates within a negligible error margin.  As a result, the differences 

between emissions estimated through the proposed method and through simulations come from the 

trajectory reconstruction process alone. This section discusses how well the trajectory reconstruction 

performs. To evaluate the adequacy of the trajectory reconstruction method, the emissions calculated 

using the reconstructed trajectories were compared to the emissions calculated using the simulated 

trajectories using a “relative difference” measure defined as 

Δ% =
𝐸𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 − 𝐸𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝐸𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 

where 

 Δ%  is the relative difference [%]; 

 𝐸𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 is the emission quantity estimated from the reconstructed trajectories; 

 𝐸𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the emission quantity estimated from the originally simulated trajectories. 

 

This section pertains to the trajectory reconstruction method that uses acceleration. The alternative 

trajectory reconstruction method that only uses average speeds is evaluated in section 4.4. First, the 

overall performance of the model in the field conditions is evaluated in section 0. Then, the subsequent 

sections investigate the effects of changing different parameters in the traffic network.  

Emissions estimates were disaggregated at the level of individual lanes and signal cycles. In each 

analysis, unless specified otherwise, one data point represents the emissions of one pollutant from all 

vehicles of one type of vehicles passing through one lane during one cycle.  

4.3.1 Performance in Field Conditions 

The performance of the trajectory reconstruction method applied to the field conditions (described in 

section 3.1.4.1) were investigated on an hourly basis. Firstly, the emissions from the simulated 

trajectories of the field conditions are explained in section 0. Again, each point represents all vehicles of 

one type crossing a lane at one intersection approach during one signal cycle. Then comparisons were 

made between the emissions from the simulated and reconstructed trajectories in section 4.3.1.2.  

4.3.1.1 Characteristics of the Simulated Trajectory Emissions 

First, the distribution of emission estimates for field conditions by lane, movement, and hour are 

examined. The emission estimates from the originally simulated trajectories are shown for all vehicle 

types and pollutants in Appendix H – Emissions from Simulated Trajectories of Field Conditions. For the 



75 
 

passenger cars, there are generally more emissions produced for thru movements than left-turns, likely 

due to higher volumes of thru movements. For single-unit trucks, however, the dominating movement 

in terms of emissions produced depends on the hour. For combination trucks and transit buses, thru 

movements do not dominate emission production for any period. The periods having the greatest 

amounts of emission are the afternoon peak hours from 15:00-18:00 for passenger cars, and there is 

less contrast between the periods for other vehicle types. For all periods, there are far greater sample 

points for passenger cars due to all lanes and cycles having passenger cars, whereas other vehicle types 

may not be observed at every lane during every cycle. However, the quantities of emissions from other 

vehicle types tend to be greater in magnitude due to their mass.  

There is a noticeable discretization in a large portion of the nitrous oxide quantities for passenger cars, 

as shown in Appendix H – Emissions from Simulated Trajectories of Field Conditions. This is most likely 

due to the constant emission rates of nitrous oxide across all operating modes as shown in Figure 26. 

For lane and cycle vehicle groups consisting of all passenger cars, the nitrous oxide emission rate would 

be applied to a whole number volume. This occurs frequently for passenger cars, whereas it is rare for 

all vehicles of one lane over an entire cycle to be only consisted of any other vehicle type. Thus, the 

emission quantities of other vehicle types do not exhibit this pattern. 

4.3.1.2 Comparison of Emissions between Simulated and Reconstructed Trajectories 

Figure 29 to Figure 31 show the distribution of emissions calculated from the simulated and 

reconstructed trajectories. The lines in the violin plots represent the median and quartiles. Overall, the 

differences are within 10% except for methane for passenger cars and during a few hours of the day for 

carbon dioxide.  

The estimates for nitrous oxide estimates have the lowest errors (Figure 30). This is no surprise as the 

nitrous oxide emission rates are constant across all operating modes as shown in Figure 26. Thus, there 

is less chance for variation.  

Figure 31 shows that estimates for the methane emissions of passenger cars had rather high differences, 

which may be attributed to the emission rates used to calculate them. As seen in Section 4.2, the 

emission rates for most pollutant and vehicle types are relatively insignificant for operating modes 0 and 

1 – braking and idling. However, for the case of methane emitted by passenger cars, the emission rates 

are rather high compared to many other modes. In this case, the modelling of deceleration behaviour 

and idling times becomes more important. Of the two, modelling deceleration behaviour is a more likely 

culprit for a source of error. It should be noted again that the deceleration functions used were 

calibrated to field data, which may differ from simulated trajectories.  

To explore whether the modelling of deceleration is a significant source of error, the Operating Mode 

Distributions were compared in Figure 32. The distribution of the operating modes shows that the 

fractions for modes 0 and 1 are significantly different between the simulated and reconstructed 

trajectories, indicating that braking and idling modes were indeed modelled less accurately than other 

modes. Mode 23 is also relatively highly allocated. The high proportion of operating mode 23 may be 

the result of generalizing several driving modes, and perhaps some of the braking activities, as one 
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speed. The higher proportions of modes 0 and 1 in the morning and afternoon peak hours suggest these 

are the hours where stop-and-go traffic occurs the most as compared to the evening peak hours, likely 

due to higher levels of congestion. 

 

 

Figure 29: Performance Across Field Condition Hours for Carbon Dioxide 

 



77 
 

 

Figure 30: Performance Across Field Condition Hours for Nitrous Oxide 
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Figure 31: Performance Across Field Condition Hours for Methane 
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Figure 32: Operating Mode Distributions for Field Conditions 
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4.3.2 Effects of Detector Location and Volume Variations 

As described in section 3.1.4.7, various advance detection locations were investigated to see their 

effects on the trajectory reconstruction process. The trajectory reconstruction using different advance 

detector locations were all performed on a dataset from the same Vissim simulation. The Vissim 

simulation was run using the model described in section 3.1.4.2 with gradually increasing vehicle input 

volumes. The only difference was the detector data selected. There were four sets of advance detectors 

placed: at 25m, 50m, 75m, and 100m setbacks. 

Despite efforts to create a dataset of uniformly distributed volumes through gradually increasing input 

volumes, Figure 33 shows that the simulation created much more cycles with low volumes. This could be 

due to the stochasticity of the actuated signal phases or simply the stochasticity of the vehicle inputs. In 

addition, volumes in the higher end become less possible due to system capacity. For thru movements 

and thru shared with right-turn movements, there are very few cycles allowing 25 vehicles through. The 

left-turns were mostly capped off at 12 vehicles. At volumes of less than 25 veh/cycle and 13 veh/cycle 

for thru & right-turn and left-turn movements respectively, the sample size seems sufficient. Conducting 

this analysis using the volume variations simulation (described in section 3.1.4.2) also allows a 

comparison of the method performance across different volume levels.  

 

Figure 33: Cycle Volume Distribution in the Volume Variations Simulation Scenario 

The estimation difference is correlated with the cycle volume, as shown in Figure 34, Figure 35, and 

Figure 36 bounded by shaded bands indicating the standard deviation. For all carbon dioxide and 

methane results, the relative differences of the emission estimates have a negative average for low 

volumes, meaning that emissions are underestimated. The estimation becomes more similar to those of 

the simulated trajectories for volumes in the mid-range of the observed volumes, that is, approximately 
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7-12 veh/cycle for left-turns and 10-20 veh/cycle for thru and thru shared with right-turn movements. 

For volumes in the high end of the observed range, the estimation becomes more variable, but this is 

likely just due to the higher ranges having smaller sample sizes as the system approaches capacity. For 

nitrous oxide estimates, the estimation difference does not change significantly over the range of 

different volumes. Again, this is likely due to nitrogen estimation having little to do with the trajectory 

reconstruction process.  

For carbon dioxide estimates of passenger cars (Figure 34), using an advance detector location closer to 

the intersection consistently results in higher emission estimates than using further advance detector 

locations. This pattern is evident for the majority of the volume range. Since the estimation tends to 

become over-estimated for higher volumes and underestimated for lower volumes, the ideal detector 

location for carbon dioxide would depend on the expected volume of the intersection approach.  

For estimating passenger car methane (Figure 35), the pattern observed with carbon dioxide is not 

constant across all turning movements. However, it can still be seen from the thru & right-turn 

movement figures that closer detectors result in higher estimates. The opposite is true for thru 

movements, but only for higher volumes. This inconsistency is likely due to the emission rates of braking 

modes being high for methane from passenger cars combined with the fact that the braking curve 

function is not calibrated to simulated braking behaviour.  

For nitrous oxide (Figure 36), the detector location does not play a significant role as the emission 

quantity is not highly dependent on the trajectory. Furthermore, the estimates have very small 

differences to begin with, across all volume levels. This is not surprising considering that the emission 

rates output by MOVES were identical for all operating modes of the same vehicle type.  
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Figure 34: Performance Across Volumes and Detector Locations for CO2 from Passenger Cars 
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Figure 35: Performance Across Volumes and Detector Locations for CH4 from Passenger Cars 
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Figure 36: Performance Across Volumes and Detector Locations for NO2 from Passenger Cars 
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The effects of detector location for single-unit trucks are shown in Figure 37 to Figure 39. Overall, the 

errors are larger and the patterns less consistent than those of passenger cars. As previously explained 

in section 4.3.1.2, higher differences should be expected for estimates regarding single-unit trucks, since 

the acceleration and deceleration modelling was focused on passenger cars. Furthermore, there is a low 

penetration of single-unit trucks in the volume variation simulations.  

Despite the higher variability in the results, it can still be seen from the carbon dioxide estimates of left-

turns (Figure 37) and the methane of thru and left-turns (Figure 38) that closer advance detector 

positions lead to higher estimates. The results of the remaining pollutant and movement combinations 

appear more random with less evident patterns in terms of performance due to different advance 

detector locations.  
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Figure 37: Performance Across Volumes and Detector Locations for CO2 from Single-Unit Trucks 
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Figure 38: Performance Across Volumes and Detector Locations for CH4 from Single-Unit Trucks 
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Figure 39: Performance Across Volumes and Detector Locations for NO2 from Single-Unit Trucks 
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4.3.3 Effects of Aggregation 

In the previous section, the performance of the proposed emission estimation method was evaluated 

using a highly disaggregate output measure, that is, emissions by vehicles on each individual lane over 

each signal cycle.  However, depending on the focus of an emission estimation tool, it may be sufficient 

to have the emission estimates at a higher level of aggregation (e.g., total emissions by traffic passing a 

given intersection at an interval of more than one signal cycle).  This section analyzes the effects of 

aggregation on the relative performance of the proposed method.  In particular, we aggregated 

emission estimates first by approach, then by approach as well as over every 5 cycles – that is, emissions 

generated by vehicles on each approach of an intersection over every 5-cycle interval were summed up. 

This analysis was performed on the same dataset as the previous section, i.e. the volume variations 

simulation. To find aggregated results, the emissions from the simulated and reconstructed trajectories 

were first aggregated. Then, the relative difference was found using the aggregated emission estimates. 

The relative differences across different levels of aggregation over a range of volumes are illustrated in 

Figure 40 and Figure 41.  

For all vehicle types and pollutants, the level of aggregation yields more precise estimates. That is, there 

is less variation in the range of possible estimates generated if results are aggregated at a higher level. 

However, the accuracy does not necessarily improve. Aggregating the reconstructed results do not 

necessarily bring them closer to the simulated results. 
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Figure 40: Performance Across Levels of Aggregation for Passenger Cars 
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Figure 41: Performance Across Levels of Aggregation for Single Unit Trucks 
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4.3.4 Effects of Heavy-Duty Vehicle Penetration 

To investigate the effects of heavy-duty vehicle penetration, a simulation was run with varying 

proportions of single-unit truck inputs, as described in section 3.1.4.3. Figure 42 shows the estimation 

differences of the trucks and passenger cars as the truck penetration levels increase. There is no 

significant change in the estimation differences for both vehicle types for all pollutants. A slight increase 

in the passenger car methane and nitrous oxide estimates is observed but is relatively insignificant. This 

indicates that changes in the vehicle type distribution does not significantly impact the performance of 

the trajectory reconstruction method.  
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Figure 42: Effects of Truck Penetration 
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4.3.5 Effects of Signal Timing Variation for Thru Movements 

As described in Section 1.4, one of the key requirements for a reliable emission estimation model is its 

ability to capture of the effects that are expected from a traffic management scheme such as signal 

timing.  In this section, we first investigate how well the proposed method is able to capture the 

emission effect due to changes in signal timing at a single intersection. In order to simulate such signal 

timing alternations, the thru green interval of the major direction in the simulated signalized 

intersections described previously was set to vary from 30s to 65s at 5s intervals while keeping all other 

intervals unchanged, as described in Section 3.1.4.5.  

To investigate the effects of signal timing changes, the emissions are aggregated over time intervals of 

500s rather than compared on a per-cycle basis, since signal timing changes also change cycle lengths. 

Only vehicles making thru movements are included. Figure 43 and Figure 44 show the changes in the 

emissions per 500s time interval while Figure 45 and Figure 46 show the changes in the emissions per 

vehicle. The shaded regions in the line plots represent the standard variation.  

Both vehicle types exhibit a slight decrease in carbon dioxide and methane production as the thru green 

phase is lengthened in Figure 43 and Figure 44, with passenger cars experiencing more of a decrease. 

The per-vehicle results in Figure 45 and Figure 46 show a similar pattern. This is expected, because the 

emissions produced by the vehicles of a movement should drop as its green phase is lengthened due to 

less frequent stopping and accelerating. The nitrous oxide emissions, however, hardly change over 

different signal interval lengths, since its emission rates are not sensitive to different operating modes. 

In terms of the trajectory reconstruction performance, the emissions are consistently underestimated, 

especially for methane. However, the overall trend is captured, so the relative differences due to phase 

length changes can still be captured.  
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Figure 43: Effects of Signal Timing for Passenger Cars – Thru Movements Only 
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Figure 44: Effects of Signal Timing for Single-Unit-Trucks – Thru Movements Only 
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Figure 45: Per Vehicle Effects of Signal Timing for Passenger Cars – Thru Movements Only 
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Figure 46: Per Vehicle Effects of Signal Timing for Single-Unit-Trucks – Thru Movements Only 
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4.3.6 Effects of Signal Coordination 

In addition to optimizing signal timing at individual intersections, signal coordination is another popular 

traffic management scheme that could be applied for addressing traffic congestion and reducing traffic 

delay and number of vehicle stops.  Reduction of traffic delay and stops are expected to improve vehicle 

fuel efficiency and emissions; as a result, a reliable emission estimation method must be able to capture 

such effects.  In this section, we attempt to evaluate these effects of signal coordination using the traffic 

corridor described in 3.1.4.4, where the signal plan remains unchanged but is coordinated for the 

northbound direction. The emission estimates are aggregated over 20-minute time intervals and filtered 

to northbound thru movements. 

The results comparing coordinated and uncoordinated scenarios, shown in Figure 47 to Figure 50, are 

for the lower end of the range of volumes simulated, since the coordination performs poorly for very 

high volumes. The differences between the coordinated and uncoordinated scenarios appear to be 

insignificant. To investigate the results, operating modes distributions for the coordinated and 

uncoordinated scenarios are compared in Figure 51. Referring to Table 13, the operating mode 0 refers 

to braking, 1 refers to idling, and 22 and 23 refers to moderate speed cruising or acceleration. The 

coordinated scenario shows lower fractions of braking and idling, but higher fractions of moderate 

speed cruising or acceleration. The lower fractions of braking and idling are due to fewer and shorter 

stops. The higher fractions of moderate speed cruising may be due to vehicles being able to attain 

higher speeds for longer periods of time when no red light is in sight. 

It is possible that using operating mode distributions is not the most suitable for evaluating signal 

coordination. When using operating mode distributions, emissions are calculated based on fractions of 

time spent in each operating mode by a fleet collectively without considering the total time individual 

vehicles took to traverse the link. Thus, if vehicles idle for a long time, the idling operating mode will 

have a higher fraction. Since the idling mode has relatively low emission rates compared to other 

modes, this may result in less emissions estimated overall when there is a high fraction of idling such as 

in uncoordinated scenarios. Additionally, higher fractions of cruising in coordinated scenarios may result 

in higher emissions estimated. If the volume remains constant, an operating mode fraction-based 

method could generate higher emission estimates for free-flow behavior than for long idle times.  

It is also important to note that accelerating from a stop requires high power and avoiding it would 

reduce emissions. When a vehicle takes off after idling, it experiences low speed acceleration first, 

represented by modes 12-16. These modes, which have high emission rates towards mode 16, have 

lower fractions in the coordinated scenario. However, their decrease in the coordinated scenario and 

their overall share is relatively small. It is possible that emissions savings from avoiding low speed 

acceleration is offset by higher fractions of moderate speed cruising.  

To check that the coordination performed as intended, time-space trajectory plots from the simulation 

were compared between the coordinated and uncoordinated scenarios, as shown in Figure 52. The 

coordinated trajectories have significantly less stopping and idling, which shows that the coordination 

worked as intended.  
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Figure 47: Effects of Signal Coordination for Passenger Cars – Northbound Thru 
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Figure 48: Effects of Signal Coordination for Single Unit Trucks – Northbound Thru 



102 
 

 

Figure 49: Per Vehicle Effects of Signal Coordination for Passenger Cars – Northbound Thru 
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Figure 50: Per Vehicle Effects of Signal Coordination for Single-Unit Trucks – Northbound Thru 
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Figure 51: Operating Mode Distribution by Coordination 
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Figure 52: Coordinated (Top) and Uncoordinated (Bottom) Vehicle Trajectories 

 

4.3.7 Effects of Speed Limits 

The third traffic control scheme investigated in this research is changing speed limit.  The effects of 

changes in speed limit were investigated using the same corridor described in Section 3.1.4.6. under a 

range of traffic volumes.  Three speed limit scenarios were simulated, including 50km/hr, 60km/hr, and 

70km/hr, as described in Section 0.  With results from all simulations overlaid onto one another, the 

effects of speed limit changes and the performance of the trajectory reconstruction method is examined 

in Figure 53 and Figure 54.  

The results from the simulations show that as the speed limit increases, the quantity of carbon dioxide 

and methane emissions produced by passenger cars also increases (Figure 54). An increase in emissions 

is expected as the speed increases, since many of the higher speed bins also have higher emission rates. 

The increase is proportional to the volume of vehicles. This pattern is not shown for the nitrous oxide, 

which is unsurprising since nitrous oxide emission rates are not dependent on operating modes. 
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The results for the reconstructed trajectories for passenger cars also show an increase in carbon dioxide 

and methane emissions as speed limits increase, but not as much. The increase shown by the simulated 

trajectories are much starker than that of the reconstructed trajectories. Evidently, even though the 

effects are seen, the trajectory reconstruction method is not capable of fully capturing the effects of 

speed limit changes for passenger cars. 

In the case of trucks (Figure 54), the changes in emissions due to speed limit changes are not as obvious 

as with passenger cars. However, a slight increase in emissions from the simulated trajectories is still 

apparent when the speed limit increases. The reconstructed trajectories hardly capture what little 

changes there are.  
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Figure 53: Effects of Speed Limits for Passenger Cars 
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Figure 54: Effects of Speed Limits for Single-Unit Trucks 
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4.3.8 Summary of Model Evaluation 

The results of the model evaluations are summarized in Table 14 to Table 16. The tables present 

statistical summaries of the relative difference between emissions estimated using the proposed 

method and the ground truth, such as means and standard deviations. Table 14 summarizes the 

performance of the proposed method in the simulation based on traffic conditions in the case study 

field for each vehicle type. Table 15 summarizes the effects of the advance detector location on 

passenger car emissions. There is no detector position that is simultaneously best for all pollutants or for 

both precision and accuracy. Table 16 summarizes the effects of aggregating the emission estimates. 

Only passenger cars are accounted for in Table 16, since most of the vehicles are passenger cars, and the 

effects of aggregation on trucks is similar. Consistence with the figures in section 4.3.3, aggregation 

leads to higher precision, but not necessarily higher accuracy. It is apparent throughout all the model 

evaluations that the accuracy and precision is best for nitrous oxide estimates and worst for methane 

estimates.  

Table 14: Statistical Summaries for the Model Evaluation in Field Conditions 

Mean Relative Difference 
 

Vehicle Type Carbon Dioxide Methane Nitrous Oxide 

Passenger Car -9.7% -29.2% 0.3% 

Single Unit Truck -1.7% -4.8% -3.4% 

Combination Truck -12.3% -0.6% -2.3% 

Transit Bus -6.2% -1.7% -3.4% 

 

Standard Deviation of Relative Difference 
 

Vehilcle Type Carbon Dioxide Methane Nitrous Oxide 

Passenger Car 14.8% 34.0% 2.2% 

Single Unit Truck 30.4% 15.9% 12.7% 

Combination Truck 34.6% 17.0% 13.1% 

Transit Bus 33.6% 21.3% 13.2% 
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Table 15: Statistical Summaries for the Effects of Advance Detector Positions on Passenger Car 
Emissions 

Mean Relative Difference 
 

Advance Detector Setback [m] Carbon Dioxide Methane Nitrous Oxide 

25 -5.9% -26.7% 0.6% 

50 -7.6% -26.5% 0.4% 

75 -8.7% -26.3% 0.3% 

100 -9.8% -26.3% 0.3% 

 

Standard Deviation of Relative Difference 
 

Advance Detector Setback [m] Carbon Dioxide Methane Nitrous Oxide 

25 16.5% 36.6% 2.7% 

50 15.0% 34.4% 2.2% 

75 14.8% 34.5% 2.0% 

100 14.7% 35.0% 1.9% 

 

Table 16: Statistical Summaries for the Effects of Aggregation on Passenger Car Emissions 

Mean Relative Difference 
 

Aggregation Level Carbon Dioxide Methane Nitrous Oxide 

None -8.7% -26.3% 0.3% 

Over Lanes -10.2% -31.8% 0.2% 

Over Lanes & Cycles -11.3% -35.3% 0.2% 

 

Standard Deviation of Relative Difference 
 

Aggregation Level Carbon Dioxide Methane Nitrous Oxide 

None 14.8% 34.5% 2.0% 

Over Lanes 15.7% 30.9% 1.7% 

Over Lanes & Cycles 11.5% 24.0% 0.6% 

 

 



111 
 

4.4 Trajectory Reconstruction Using Average Speed Interpolation 

An alternative, simpler method of trajectory reconstruction was explored in addition to the primarily 

proposed trajectory reconstruction method. This method linearly interpolates the vehicle trajectories 

between detectors, as explained in section 3.2.2. To evaluate this simplified method, it was performed 

on the volume variations simulation described in section 3.1.4.2.  

The operating mode distribution created by the simplified method is shown in Figure 55 juxtaposed with 

those created by the simulated trajectories. Compared to the operating mode distributions created 

using the primary trajectory reconstruction method (Figure 32), the simplified method does not emulate 

the simulated trajectories as accurately. Operating mode 12 is extremely over-represented, because 

stop-and-go motions between detectors are all modelled as a slow average speed. Furthermore, the 

braking mode is not represented at all, since the average speed method does not account for 

acceleration or deceleration. However, these issues themselves are not of concern, as the end objective 

is the emission estimate and not the operating mode distribution. The performance of both methods is 

compared in Figure 56 to Figure 61. 

 

 

Figure 55: Operating Mode Distribution for Average Speed Trajectory Reconstruction 

For passenger cars, the simplified method tends to underestimate carbon dioxide and methane 

emissions (Figure 56 and Figure 57), except in the case of carbon dioxide from left turn movements. For 

methane, the underestimation is extremely high. This is likely due to the fact that methane emission 

rates are high for passenger cars for the braking operating mode, but the simplified method does not 

account for this mode. In the case of nitrous oxide (Figure 58), there is virtually no difference between 

using either method, since nitrous oxide emission rates are relatively independent of operating modes.  
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On the contrary, the results for single-unit trucks show that the simplified method tends to overestimate 

the emissions as compared to the primary method. This occurs significantly for carbon dioxide from left-

turns (Figure 59) and for methane from all movements (Figure 60). These results should be confirmed in 

a further analysis using acceleration and deceleration functions that are calibrated for heavy duty 

vehicles, since the current research only uses acceleration and deceleration functions calibrated to 

passenger cars. Again, the results for nitrous oxide emissions (Figure 61) differ very little between the 

primary method and the simplified method. 
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Figure 56: Comparison with Average Speed Trajectory Reconstruction for CO2 from Passenger Cars 
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Figure 57: Comparison with Average Speed Trajectory Reconstruction for CH4 from Passenger Cars 
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Figure 58: Comparison with Average Speed Trajectory Reconstruction for NO2 from Passenger Cars 
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Figure 59: Comparison with Average Speed Trajectory Reconstruction for CO2 from Trucks 
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Figure 60: Comparison with Average Speed Trajectory Reconstruction for CH4 from Trucks 



118 
 

 

 

Figure 61: Comparison with Average Speed Trajectory Reconstruction for NO2 from Trucks 
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Chapter 5 Conclusion 

An emission modelling method was developed to produce emission estimates using high-resolution 

traffic data in real-time. It was developed to serve as an emission monitoring tool for traffic 

management applications. The research was performed in a simulation environment consisting of a 

Vissim model coupled with MOVES-based emission estimation. This simulation coupling provided a 

“ground truth” as a basis for comparison, as well as the assumed traffic data required for the developed 

method. The simulation model was built and validated to field conditions in an urban corridor with 

signalized intersections, located in Cambridge, Ontario.  

The proposed method is assumed to have access to vehicle presence detection data and signal timing 

records as input. Using this input, it reconstructs individual vehicle trajectories at a second-by-second 

level of detail, including instantaneous speed and acceleration information. This information is then 

used to estimate emissions using a simplified emission model reconstructed from the MOVES model.  

This approach retains the required accuracy while significantly reducing the computation time required 

by the MOVES software; thus, emissions can be estimated in real-time using traffic data. 

To evaluate the performance of the proposed method for evaluating alternative traffic management 

schemes, an extensive set of experiments were conducted on a large number of traffic scenarios.  It was 

found that the performance of the proposed method varies depending on the traffic volume and speed 

limits.  It is able to capture some of the effects of various traffic management strategies. Three 

greenhouse gases were focused on: carbon dioxide, methane, and nitrous oxide. The performance also 

varies depending on the type of emission being estimated.  

Further research is recommended based on the results of this thesis. Due to the challenges and 

limitation met in this research work, recommendations are also made for other fields of research, as the 

challenges and limitations may be overcome through advancement in other fields.   

5.1 Findings 

In this thesis, a method was developed to reconstruct vehicle trajectories using traffic data, and then to 

estimate emission based on the reconstructed trajectories. The emission estimation method was more 

of a computational shortcut than a mathematical modelling endeavour and can generate results nearly 

identical to those of the “ground truth” method. Thus, the uncertainty lies mainly in the trajectory 

reconstruction process.  

5.1.1 Adequacy of Traffic Modelling Techniques 

The trajectory reconstruction method is able to represent the vehicle trajectories for the most part on a 

time-space basis. The vehicle speeds and accelerations generated from this method can create an 

operating mode distribution that is similar to that created from the originally simulated trajectories. The 
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overall performance of the developed method varies depending on the type of emission being 

estimated. Due to the nature of the emission model, it has been shown that it is relatively easy to 

reconstruct vehicle trajectories to yield accurate nitrous oxide emissions, since the nitrous oxide 

emission rates generated do not depend on operating modes. For carbon dioxide and methane, it 

becomes more important to properly model the vehicle activities. Especially in the case of methane for 

passenger vehicles, it is important to properly model deceleration behaviour, as the mode of 

deceleration has relatively high emission rates.  

The methods tend to perform better for high volumes of traffic, so long as the volumes are not 

approaching capacity. The specified location for the advance vehicle detectors also plays a role in the 

performance, but not a major role. Aggregating the estimates across larger groups of vehicles over lanes 

and time can reduce the variation in the estimates, but accuracy is not significantly improved. 

Differences in the vehicle type proportions in the fleet also does not significantly affect performance. 

5.1.2 Effects of Traffic Controls on Emissions 

Effects in the traffic activities caused by changes in signal controls, such as introducing signal 

coordination or increasing phase lengths, results in changes in the overall emissions. The overall change 

is adequately captured by the trajectory reconstruction process. While the absolute value of the 

emissions generated is in many cases underestimated to varying degrees depending on the pollutant 

and vehicle type, the overall pattern is usually captured. That is, the increase in emissions caused by 

signal coordination or phase lengthening is usually more accurately captured than the absolute quantity 

of emissions. This is important when using the emission estimates for traffic management evaluations.  

The effects of speed limits, however, is not as adequately captured. The reconstructed trajectories are 

able to show that increases in emissions as speeds increase, but not the same degree that the simulated 

trajectories show.  

5.1.3 Primary versus Simplified Method 

A simplified method that only consists of linearly interpolating trajectories between detections was 

explored. In comparison to the primary method, the performance may be similar or worse depending on 

the vehicle type and pollutant type being estimated. Nitrous oxide estimates were equally adequate 

from both methods, since nitrous oxide emissions are not heavily dependent on operating modes in the 

model. However, for carbon dioxide, the simplified method does not perform as well. The simplified 

method is especially inadequate for estimating methane from passenger cars due to its high 

dependence on braking behaviour, which is not modelled in the simplified method.  
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5.2 Discussion 

The developed method works best under mid- to high-range volumes relative to the capacity. It yields 

highly accurate nitrous oxide emission estimates, relatively decent estimates for carbon dioxide, and 

needs work for methane emissions. In terms of capturing effects of traffic controls, the relative 

difference can usually be captured, although estimates can significant underestimate the absolute 

emission quantities.  

To apply the proposed method, high-resolution detector data and signal timing records are required, 

which is increasingly available as video detection and other means become more widely used in traffic 

management. There will always be challenges in data collection and utilization. Aside from traffic data, 

meteorological data, vehicle fleet data, and fuel data is also required. However, the remaining data can 

be obtained at a more aggregated scale.  

5.2.1 Applications 

This real-time estimation method can be used in the evaluation of traffic controls, which is often 

dynamic and could benefit from faster feedbacks. Such applications can be useful for monitoring the 

effects of traffic on air quality and the greenhouse gas emissions. This would help traffic management 

consider the external costs that control strategies can place on surrounding residents. Furthermore, 

effects can be detected immediately rather than waiting for long term studies.  

Some challenges of implementing a real-time emission monitoring framework need to be considered for 

any application. A balance must always be struck between accuracy and cost. This thesis presents two 

methods, one significantly simpler than the other, which can in some cases produce similar results but 

have completely different capabilities. Where necessary, a more complex model may be needed, but 

since they have more computationally intensive, complexity is only desirable if the benefits outweigh 

the costs.  

There are many components to the model, such as individual functions used to model acceleration and 

deceleration behaviour, car-following model parameters, other vehicle behaviour parameters, and 

emission rates. The current version is calibrated to Vissim simulations, but applications in the real world 

may require different parameters and assumptions. There could also be differences from location to 

location. The model itself is easily scalable, and its generalizability is meant to be high, requiring a few 

parameter changes at most for different settings or driver behaviours, but whether these goals have 

been achieved would require further research.  

The real-time emission calculation method developed requires emission rates to be pre-generated using 

a set of inputs that account for all the variations of the factors that the model must be sensitive to. Since 

traffic management deals with controlling traffic behaviours, it is vehicle activities to which the model 

must be sensitive. Factors that are external and not affected by traffic management should be 

aggregated over a larger scale and held constant over the small scale within which the traffic 

management evaluations take place. These external factors include meteorological, vehicle age, and fuel 
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related variables. The challenge in this respect is to determine the spatial-temporal scope within which 

external variable should be held constant. For example, to evaluate traffic controls over the course of a 

day, the average temperature and humidity of the day could be used, along with regional vehicle and 

fuel information. This would show the effects of traffic management on the emissions over the different 

traffic patterns of the day while holding external variables constant. However, if the temperature 

changes drastically over the day, the scope of constant external factors may need to be reduced, so that 

control strategies are evaluated using realistic relative changes.  

5.2.2 Limitations 

Since this research was performed in a simulated environment, the drawbacks may be underestimated. 

In the real world, driver behaviour has a larger variation, due to human error and changing 

environmental factors.  

Another limitation comes from the accuracy of data available. While newer technologies such as video-

detection can provide high-resolution data, there are still errors. These errors would not only compound 

onto the errors of the trajectory reconstruction, they may cause the algorithm to perform less optimally.  

Generally, there are always limitation in microscopic emission modelling, due to numerous assumptions 

being made, such as driving behaviour and fleet characteristics. It is also a question to confirm whether 

the models used have sufficient precision for highly microscopic applications, how they compare to 

direct measurements, and under what circumstances certain assumptions hold. For example, there may 

be an issue with using operating mode fractions to estimate emissions without an absolute metric, as 

discussed in Section 4.3.6.  

5.3 Future Research 

Based on the findings, some future research is recommended. These recommendations include 

improvements to the proposed method, validation of the proposed method using field studies, and a 

broader study of vehicle emission reduction.  

5.3.1 Trajectory Reconstruction Modelling Parameter Calibration 

The parameters used in the trajectory reconstruction method described in Section 0 were calibrated 

through visual analysis of the reconstructed trajectories overlaid onto the originally simulated 

trajectories. A more quantitative approach could yield better results. The parameters are %𝑐𝑟𝑢𝑖𝑠𝑒, 𝑚𝑙𝑐, 

𝑝𝑠𝑡𝑜𝑝,𝑐𝑟𝑢𝑖𝑠𝑒, 𝑇ℎ,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒, 𝑙𝑒𝑓𝑓,𝑛−1, 𝑑𝑡, and 𝑇𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. 

The parameters of the acceleration and deceleration functions originally found in the literature 

(Bogdanović & Ruškić, 2013; Kumar Maurya & Bokare, 2012) were 

𝑘3 = 0.005 
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𝑘4 = 0.154 

𝑘5 = 0.493 

𝛽0 = 3.369 

𝛽1 = 0.072 

These values were calibrated to field data. The acceleration and deceleration behaviours in Vissim may 

be different. Perhaps a set of acceleration and deceleration functions calibrated to Vissim driving 

behaviour could allow better comparisons in a simulated environment. However, for real-world 

applications, functions calibrated to actual driving behaviour should be used. 

In addition, the literature provided separate functions for the acceleration and deceleration behaviours 

of different vehicle types, but only the function for light duty passenger vehicles were used in this 

research due to the low penetration of other vehicle types. Since larger vehicles generate a significant 

amount of emissions, their trajectories should be modelled more accurately in a practical application of 

this method. 

5.3.2 Field Validation 

The trajectory reconstruction method is based on simulated vehicle behaviour. Further research could 

investigate how well emission modelling can be performed using reconstructed trajectories in 

comparison with field measurements of emissions. In addition to validating the trajectory reconstruction 

method, field validation would be required to see whether quality data can be collected for trajectory 

reconstruction. Data collection methods will continue to improve, but challenges associated with 

collected real-world vehicle detection data should be considered.  

5.3.3 Other Means of Emission Management 

It may be worthwhile to investigate the feasibility of using vehicle recorded information for emission 

estimation. Vehicles can already indicate their instantaneous fuel economy. If this information, along 

with other helpful data such as speed and acceleration or engine conditions, can be recorded, then it 

can be transmitted to a traffic control center for analysis. With connected vehicle technology (e.g., 

vehicle-to-vehicle, vehicle-to-infrastructure), large amounts of such vehicle-based data could be 

collected. Using this data, more accurate emission estimations can be performed. If this data can also be 

paired with GPS data, then a vehicle’s position, along with its emissions-related information, can be 

known, and can then be associated with the relevant traffic controls. This method would enable a more 

direct flow of information between vehicle emissions and traffic controllers, cutting out some of the 

errors that may result in the emission modelling process.  
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Appendix A – Operating Mode Bins  
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0 Braking 0 0 0 0 -2 -1 

1 Idling 0 0 -1 1 0 0 

11 Low Speed Coasting; VSP< 0; 1<=Speed<25 0 0 1 25 0 0 

12 Cruise/Acceleration; 0<=VSP< 3; 1<= Speed<25 0 3 1 25 0 0 

13 Cruise/Acceleration; 3<=VSP< 6; 1<=Speed<25 3 6 1 25 0 0 

14 Cruise/Acceleration; 6<=VSP< 9; 1<=Speed<25 6 9 1 25 0 0 

15 Cruise/Acceleration; 9<=VSP<12; 1<=Speed<25 9 12 1 25 0 0 

16 Cruise/Acceleration; 12<=VSP; 1<=Speed<25 12 0 1 25 0 0 

21 Moderate Speed Coasting; VSP< 0; 25<=Speed<50 0 0 25 50 0 0 

22 Cruise/Acceleration; 0<=VSP< 3; 25<=Speed<50 0 3 25 50 0 0 

23 Cruise/Acceleration; 3<=VSP< 6; 25<=Speed<50 3 6 25 50 0 0 

24 Cruise/Acceleration; 6<=VSP< 9; 25<=Speed<50 6 9 25 50 0 0 

25 Cruise/Acceleration; 9<=VSP<12; 25<=Speed<50 9 12 25 50 0 0 

26 Cruise/Acceleration; 12<=VSP; 25<=Speed<50 12 0 25 50 0 0 

27 Cruise/Acceleration; 12<=VSP<18; 25<=Speed<50 12 18 25 50 0 0 

28 Cruise/Acceleration; 18<=VSP<24; 25<=Speed<50 18 24 25 50 0 0 

29 Cruise/Acceleration; 24<=VSP<30; 25<=Speed<50 24 30 25 50 0 0 

30 Cruise/Acceleration; 30<=VSP; 25<=Speed<50 30 0 25 50 0 0 

33 Cruise/Acceleration; VSP< 6; 50<=Speed 0 6 50 0 0 0 

35 Cruise/Acceleration; 6<=VSP<12; 50<=Speed 6 12 50 0 0 0 

36 Cruise/Acceleration; 12 <= VSP; 50<=Speed 12 0 50 0 0 0 

37 Cruise/Acceleration; 12<=VSP<18; 50<=Speed 12 18 50 0 0 0 

38 Cruise/Acceleration; 18<=VSP<24; 50<=Speed 18 24 50 0 0 0 

39 Cruise/Acceleration; 24<=VSP<30; 50<=Speed 24 30 50 0 0 0 

40 Cruise/Acceleration; 30<=VSP; 50<=Speed 30 0 50 0 0 0 

300 All Running 0 0 0 0 0 0 
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Appendix B – Sample of Signal Plan 
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Appendix C – Signal Actuation Detector Loop Layout  

 

Sent:                                               November 9, 2017 4:11 PM 
Subject:                                         RE: Traffic Signal Plans Request 
  
Hi Anjie, 
  
We use a standard detector length of 30m. All side streets along Hespeler Rd have detection in every 
lane as they are actuated. The only lanes where detectors are set back 7.5m from the stop bar are left-
turn lanes on the main street with protected/permissive phasing. The reasoning for that is to only 
display the left-turn phase if 2 or more vehicles are in the lane. If the left-turn is fully-protected the 
detector is not set back. This would be the case at Hespeler @ Eagle/Pinebush. 
  
Hope this helps. If you have any other questions, let me know. 
  
  
Sent: Thursday, November 09, 2017 9:54 AM 
Subject: RE: Traffic Signal Plans Request 
  
Hi Patricia, 
  
Would it be possible for me to get information on the vehicle detector layouts of these intersections as 
well? Such as setbacks, detector lengths, etc. 
  
Thank you, 
  
Anjie 
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Appendix D – Sample of Turning Movement Count Data 
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Appendix E – Comparison of Field and Simulation Travel Times 

 



135 
 

Comparison of Field and Simulation Travel Time Scaled by Sample Sizes 
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Appendix F – Vehicle Age Distribution Extrapolation 

Age Age Proportion 

0 0.047412297 

1 0.077551647 

2 0.081137376 

3 0.074652732 

4 0.075186485 

5 0.067807862 

6 0.080344456 

7 0.075363515 

8 0.064434485 

9 0.06879337 

10 0.053266193 

11 0.050479411 

12 0.041851768 

13 0.027045465 

14 0.026046501 

15 0.019670907 

16 0.014898813 

17 0.012768849 

18 0.00885373 

19 0.007332129 

20 0.005767657 

21 0.004536999 

22 0.00356893 

23 0.00280742 

24 0.002208395 

25 0.001737185 

26 0.001366518 

27 0.001074941 

28 0.000845579 

29 0.000665156 

30 0.00052323 

 

Extrapolation of age distribution for vehicles 19 years and older was based on available data for vehicles 

older than 10 years.  
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Appendix G – Partial Visualization of the MOVES Algorithm 

  

Based on  

(U.S. Environmental Protection Agency, 2015) 

 



138 
 

Appendix H – Emissions from Simulated Trajectories of Field 

Conditions 
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Passenger Cars 
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Single Unit Trucks 
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