3 research outputs found

    Molecular Graphics Approach To Bacterial Acrb Protein-β-lactam Antibiotic Molecular Recognition In Drug Efflux Mechanism

    No full text
    AcrAB-TolC is the most important multidrug efflux pump system of Gram-negative bacteria, responsible for their resistance to lipophilic and amphiphilic drugs. In this work, a molecular graphics study of the pump components AcrB and TolC, 16 β-lactam antibiotics and 7 other substrates, as well as of AcrB-substrate complexes, was performed in order to give a mechanistic proposal for the efflux process at molecular level. AcrAB-TolC is a proton-dependent electromechanical device which opens to extrude drugs from the bacterial periplasm and perhaps cytoplasm, by means of a series of structural changes within the complex and its components AcrA, AcrB and TolC. These changes are initiated by protonation and disruption of salt bridges and certain hydrogen bonds, and are followed by conformational changes in which a number of intra- and interchain interactions are rearranged. Molecular properties of β-lactams accounting for their lipophilicity, shape/conformation and other sterical features, polar/charge group distribution and other electronic properties, and hydrogen bonding potency determine their interaction with polar headpieces of the inner membrane, recognition and binding to receptors of AcrB and TolC. The orientation of the β-lactam molecular dipoles with respect the efflux system is maintained during the drug efflux. Elongated cylinder-like β-lactam antibiotics with lipophylic side chains, a significantly negative component of the dipole moment and low hydrogen bonding capacity seem to be good substrates of AcrAB-TolC. © 2005 Elsevier Inc. All rights reserved.251126145Saier Jr., M.H., A functional-phylogenetic classification system for transmembrane solute transporters (2000) Microbiol. Mol. Biol. Rev., 64, pp. 354-411Van Bambeke, F., Glupczynski, Y., Plésiat, P., Pechère, J.C., Tulkens, P.M., Antibiotic efflux pumps in prokaryotic cells: occurence, impact on resistance and strategies for the future antimicrobial therapy (2003) J. Antimicrob. Chemother., 51, pp. 1055-1065Van Bambeke, F., Michot, J.-M., Tulkens, P.M., Antibiotic efflux pumps in eukaryotic cells: occurence and impact on antibiotic cellular pharmacokinetics, pharmacodynamics and toxicodynamics (2003) J. Antimicrob. Chemother., 51, pp. 1067-1077Nelson, D.L., Cox, M.M., (2000) Lehninger Principles of Biochemistry. 3rd. ed., , Worth Publishers, New YorkLarriba, S., Bassas, L., Egozcue, S., Giménez, J., Ramos, M.D., Briceño, O., Adenosine triphosphate-binding cassette superfamily transport gene expression in severe male infertility (2001) Biol. Reprod., 65, pp. 394-400Klunder, J.W., Komdeur, R., Van Der Graaf, W.T.A., De Bont, E.J.S.M., Hoekstra, H.J., Van Den Berg, E., Molenaar, W.M., Expression of multidrug resistance-associated proteins in rhabdomyosarcomas before and after chemotherapy: the relationship between lung resistance-related protein (LRP) and differentiaion (2003) Hum. Pathol., 34, pp. 150-155Paulsen, I.T., Brown, M.H., Skurray, R.A., Proton-dependent multidrug efflux systems (1996) Microbiol. Rev., 60, pp. 575-608Putman, M., Van Veen, H.W., Konings, W.N., Molecular properties of bacterial multidrug transporters (2000) Microbiol. Mol. Biol. Rev., 64, pp. 672-693Zaman, G.J.R., Flens, M.J., Van Leusden, M.R., De Haas, M., Mülder, H.S., Lankelma, J., Pineado, H.M., Borst, P., The human multidrug resistance-associated protein MRP is a plasma drug-efflux pump (1994) Proc. Natl. Acad. Sci. U.S.A., 91, pp. 8822-8826De Wet, D., McIntosh, D.B., Conseil, G., Baubichon-Cortay, H., Krell, T., Jault, J.-M., Daskiewicz, J.-B., Di Pietro, A., Sequence requirements of the ATP-binding site within the C-terminal nucleotide-binding domain of mouse P-glycoprotein: structure-activity relationships for flavonoid binding (2001) Biochemistry, 40, pp. 10382-10391Kollef, M.H., Selective digestive decontamination should not be routinely employed (2003) Chest, 123, pp. 464S-468SAustin, D.J., Kristinsson, K.G., Anderson, R.M., The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 1152-1156Shea, K.M., Antibiotic resistance: what is the impact of agricultural uses of antibiotics on children's health? (2003) Pediatrics, 112, pp. 253-258Levy, S.B., Antimicrobial resistance: bacterial on the defense (1998) Br. Med. J., 317, pp. 612-613Levy, S.B., Multidrug resistance-a sign of the times (1998) N. Engl. J. Med., 338, pp. 1376-1378Saller, J.M.C., Salles, M.J.C., (2000) Antimicrobianos, , EDUFPA, Belém, PA, BrazilWilliams, R.J., Heymann, D.L., Containment of antibiotic resistance (1998) Science, 279, pp. 1153-1154Houvinen, P., Cars, O., Control of antimicrobial resistance: time for action (1998) Br. Med. J., 317, p. 613Esteva, F.J., Valero, V., Pusztai, L., Boehnke-Michaud, L., Buzdar, A.U., Hortobagyi, G.N., Chemotherapy of metastasic breast cancer: what to expect in 2001 and beyond (2001) Oncologist, 16, pp. 133-146Markham, P.N., Westhaus, E., Klyachko, K., Johnson, M.E., Neyfakh, A.A., Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus (1999) Antimicrob. Agents Chemother., 43, pp. 2404-2408Malléa, M., Mahamoud, A., Chevalier, J., Alibert-Franco, S., Brouant, P., Alkylamonquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates (2003) Biochem. J., 376, pp. 801-805Österberg, T., Norinder, U., Theoretical calculation and prediction of P-glycoprotein-interacting drugs using MolSurf parametrization and PLS statistics (2000) Eur. J. Pharm. Sci., 10, pp. 295-303Dearden, J.C., QSAR of Pgp efflux (2002) Proceedings of the 14th European Symposium on Quantitative Structure-Activity Relationships: Workshop 1-Drug Transporters. Can they be Modelled?, , Bournemouth, UK, September 8-13 http://www.mgsm.org/euroqsar_workshop.htm (last access on August 9, 2004)Gombar, V.K., Polli, J.W., Humphreys, J.E., Wring, S.A., Serabjit-Singh, C.S., Predicting P-glycoprotein substrates by a quantitative structure-activity relationship model (2004) J. Pharm. Sci., 93, pp. 957-968Ekins, S., Kim, R.B., Leake, B.F., Dantzig, A.H., Schuetz, E.G., Lan, L.-B., Yasuda, K., Wrighton, S.A., Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein (2002) Mol. Pharmacol., 61, pp. 964-973Gopalakrishnan, B., Khandelwal, A., Rajjak, S.A., Selvakumar, N., Das, J., Trehan, S., Igbal, J., Kumar, M.S., Three-dimensional studies of tricyclic oxazolidinones as antibacterial agents (2003) Bioorg. Med. Chem., 11, pp. 2569-2574Stanton, D.T., Madhar, P.J., Wilson, L.J., Morris, T.W., Hershberger, P.M., Parker, C.N., Development of a quantitative structure-activity relationship model for inhibition of gram-positive bacterial cell growth by biarylamides (2004) J. Chem. Inf. Comput. Sci., 44, pp. 221-229Ferreira, M.M.C., Kiralj, R., QSAR study of β-lactam antibiotic efflux by the bacterial multidrug resistance pump AcrB (2004) J. Chemometr., 18, pp. 242-252Powers, R.A., Stoichet, B.K., Structure-based approach for binding site identification on AmpC β-lactamase (2002) J. Med. Chem., 45, pp. 3222-3234Gordon, E., Mouz, N., Dueé, E., Dideberg, O., The crystal structure of the penicillin-binding protein 2× from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance (2000) J. Mol. Biol., 299, pp. 477-485van Bambeke, F., Balzi, F., Tulkens, P.M., Antibiotics efflux pumps (2002) Biochem. Pharmacol., 60, pp. 457-470Nikaido, H., Multidrug efflux pumps of gram-negative bacteria (1996) J. Bacteriol., 178, pp. 5853-5859Sulavik, M., Houseweart, C., Cramer, C., Jiwani, N., Murgolo, N., Greene, J., Di Domenico, B., Shimer, G., G. Antibiotic susceptibility of Escherichia coli strains lacking multidrug efflux pump genes (2001) Antimicrob. Agents Chemother., 45, pp. 1126-1136Giraud, E., Cloekaert, A., Kerboeuf, D., Chaslus-Dancla, E., Evidence for active efflux as the primary mechanism of resistance to ciprofloxacin in Salmonella enterica serovar typhimurium (2000) Antimicrob. Agents Chemother., 44, pp. 1223-1228Okusu, H., Ma, D., Nikaido, H., AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (mar) mutants (1996) J. Bacteriol., 178, pp. 306-308Zgurskaya, H.I., Nikaido, H., Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 7190-7195Helling, R.B., Janes, B.K., Kimball, H., Tran, T., Budesmann, M., Check, P., Phelan, D., Miller, C., Toxic waste disposal in Escherichia coli (2002) J. Bacteriol., 184, pp. 3699-3703Nikaido, H., Basina, M., Nguyen, V., Rosenberg, E.Y., Multidrug efflux pump AcrB of Salmonella typhimurium exctretes only those β-lactam antibiotics containing lipophilic side chains (1998) J. Bacteriol., 180, pp. 4686-4692Sanchez, L., Pan, W., Vinas, M., Nikaido, H., The acrAB homolog of Hamemophilus influenzae codes for a functional multidrug efflux pump (1997) J. Bacteriol., 179, pp. 6855-6857Aono, R., Tsukagoshi, N., Yamamoto, M., Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K12 (1998) J. Bacteriol., 180, pp. 938-944Thanassi, D.G., Cheng, L.W., Nikaido, H., Active efflux of bile salts by Escherichia coli (1997) J. Bacteriol., 179, pp. 2512-2518White, D.G., Goldman, J.D., Demple, B., Levy, S.B., Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli (1997) J. Bacteriol., 179, pp. 6122-6126Tamura, N., Konishi, S., Yamaguchi, A., Mechanism of drug/H+ antiport: complete cysteine-scanning mutagenesis and the protein engineering approach (2003) Curr. Opin. Chem. Biol., 7, pp. 570-579Murakamai, S., Yamaguchi, A., Multidrug-exporting secondary transporters (2003) Curr. Opin. Struct. Biol., 13, pp. 443-452Murakami, S., Nakashima, R., Yamashita, E., Yamaguchi, A., Crystal structure of bacterial multidrug efflux transporter AcrB (2002) Nature, 419, pp. 587-593Pos, K.M., Diederichs, K., Purification, crystallization and preliminary diffraction studies of AcrB, an inner-membrane multi-drug efflux protein (2002) Acta Cryst., D58, pp. 1865-1867Zgurskaya, H., Nikaido, H., Bypassing the periplasm: Reconstitution of the AcrAB multidrug efflux pump of Escherichi coli (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 7190-7195Pos, K.M., Schiefner, A., Seeger, M.A., Diederichs, K., Crystallographic analysis of AcrB (2004) FRBS Lett., 564, pp. 333-339Elkins, C.A., Nikaido, H., 3D structure of AcrB: the archetypal multidrug efflux tranporter of Escherichia coli likely captures substrates from periplasm (2003) Drug Resist. Updates, 6, pp. 9-13Yu, E.W., Aires, J.R., Nikaido, H., AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity (2003) J. Bacteriol., 185, pp. 5657-5664Murakami, S., Tamura, N., Saito, A., Hirata, T., Yamaguchi, A., Extramembrane central pore of multidrug exporter AcrB in Escherichi coli plays an important role in drug transport (2004) J. Biol. Chem., 279, pp. 3743-3748Yu, E.W., McDermott, G., Zgurskaya, H.I., Nikaido, H., Koshland Jr., D.E., Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump (2003) Science, 300, pp. 976-980Koronakis, V., Sharff, A., Koronakis, E., Luisi, B., Hughes, C., Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export (2000) Nature, 405, pp. 914-919Sharff, A., Fanutti, C., Shi, J., Calladine, C., Luisi, B., The role of the TolC family in protein transport and multidrug efflux (2001) Eur. J. Biochem., 268, pp. 5011-5026Andersen, C., Koronakis, E., Bokma, E., Eswaran, J., Humphreys, D., Hughes, C., Koronakis, V., Transition to the open state of the ToIC periplasmic tunnel entrance (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 11103-11108Thanabalu, T., Koronakis, E., Hughes, C., Koronakis, V., Substrates-induced assembly of a contiguous channel from protein export from E. coli: reversible bridging for an inner-membrane translocase to an outer membrane exit pore (1998) EMBO J., 17, pp. 6487-6496Avila-Sakar, A.J., Misaghi, S., Wilson-Kubalek, E.M., Downing, K.H., Zgurskaya, H.I., Nikaido, H., Nogales, E., Lipid-layer crystallization and preliminary three-dimensional structural analysis of AcrA, the periplasmic component of a bacterial multidrug efflux pump (2001) J. Struct. Biol., 136, pp. 81-88Zgurskaya, H.I., Nikaido, H., Cross-linked complex between oligomeric periplasmic lipoprotein AcrA and the inner-membrane-associated multidrug efflux pump AcrB from Eschrichia coli (2000) J. Bacteriol., 182, pp. 4264-4267Ip, H., Stratton, K., Zgurskaya, H., Liu, J., pH-induced conformational changes of AcrA, the membrane fusion protein of Escherichia coli multidrug efflux system (2003) J. Biol. Chem., 278, pp. 50474-50482Dinh, T., Paulsen, I.T., Saier Jr., M.H., A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria (1994) J. Bacteriol., 176, pp. 3825-3831Fralick, J.A., Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump in Escherichia coli (1996) J. Bacteriol., 178, pp. 5803-5805Nikaido, H., Microdermatology: cell surface in the interaction of microbes with the external world (1999) J. Bacteriol., 181, pp. 4-8Lee, A., Mao, W., Warren, M.S., Mistry, A., Hoshino, K., Okumura, R., Ishida, H., Lomovskaya, O., Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance (2000) J. Bacteriol., 182, pp. 3142-3150Elkins, C.A., Nikaido, H., Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops (2002) J. Bacteriol., 184, pp. 6490-6498(2000) WebLab ViewerPro, version 4.0, , Accelrys, Inc., Burlington, MABartuluchi, M., Sevlever, G., Taratuto, A.L., Multidrug resistance proteins in Tuberou sclerosis and refractory epilepsy (2004) Pediatric Neurol., 30, pp. 102-106Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The Protein Data Bank (2000) Nucl. Acids Res., 28, pp. 235-242Fujihira, E., Tamura, N., Yamaguchi, A., Membrane topology of a multidrug efflux transporter, AcrB, in Escherichia coli (2002) J. Bacteriol., 131, pp. 145-151Tikhonova, E.B., Wang, Q., Zgurskaya, H.I., Chimeric analysis of the multicomponent multidrug efflux transporters from gram-negative bacteria (2002) J. Bacteriol., 184, pp. 6499-6507Guan, L., Ehrmann, M., Yoneyama, H., Nakae, T., Membrane topology of the xenobiotic-exporting subunit, MexB, of the MexA. B-OprM extrusion pump in Pseudomonas aeruginosa (1999) J. Biol. Chem., 274, pp. 10517-10522Wong, K.K.Y., Brinkman, F.S.L., Benz, R.S., Hancock, R.E.W., Evaluation of a structural model of Pseudomonas aeruginosa outer membrane protein OprM, and efflux component involved in intrinsic antibotic resistance (2001) J. Bacteriol., 183, pp. 367-374Akama, H., Matsuura, T., Kashiwagi, S., Yoneyama, H., Narita, S.-I., Tsukihara, T., Nakagawa, A., Nakae, T., Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa (2004) J. Biol. Chem., 279, pp. 25939-25942Higgins, M.K., Bokma, E., Koronakis, E., Hughes, C., Koronakis, V., Structure of the periplasmic component of a bacterial drug efflux pump (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 9994-9999Wise, R., Maximizing efficacy and reducing the emergence of resistance (2003) J. Antimicrob. Chemother., 51 (SUPPL. S1), pp. 37-42Ma, D., Cook, D.N., Alberti, M., Pon, N.G., Nikaido, H., Hearst, J.E., Genes acrA and acrB encode a stress-induced efflux system of Escherichi coli (1995) Mol. Microbiol., 16, pp. 45-55Neyfakh, A.A., Mystery of multidrug transporters: the answer can be simple (2002) Mol. Microbiol., 44, pp. 1123-1130Paulsen, I.T., Multidrug efflux pumps and resistance: regulation and evolution (2003) Curr. Opin. Microbiol., 6, pp. 446-451(2001) PC Spartan Pro, Version 1.0.5, , Wavefunction Inc., Irvine, CA(1996) Lobanov VS MOPAC 6.0 for Microsoft Windows, , University of FloridaSpek, A.L., (2000) PLATON-A Multipurpose Crystallographic Tool 31000, , Utrecht University, The Netherlands(2001) Matlab, Version 6.1.0.450, Release 12.1, , MathWorks, Inc., Natick, MAKiralj, R., Ferreira, M.M.C., A priori molecular descriptors in QSAR: a case of HIV-1 protease inhibitors. II. Molecular graphics and modeling (2003) J. Mol. Graph. Mod., 21, pp. 499-515Halgren, T.A., Merck molecular force field. 1. Basis, form, scope, parameterization, and performance of MMFF94 (1996) J. Comp. Chem., 17, pp. 490-519Martens, H., Naes, T., (1989) Multivariate Calibration. 2nd ed., , Wiley, New York, NYBeebe, K.R., Pell, R., Seasholtz, M.B., (1998) Chemometrics: A Practical Guide, , Wiley, New York, NYFerreira MMC, Antunes, A.M., Melo, M.S., Volpe, P.L.O., Chemometrics I: multivariate calibration, a tutorial (1999) Quím. Nova, 22, pp. 724-731Geladi, P., Kowalski, B.R., Partial least squares regression-a tutorial (1986) Anal. Chim. Acta, 185, pp. 1-17Ferreira, M.M.C., Multivariate QSAR (2002) J. Braz. Chem. Soc., 13, pp. 742-753Dutta, M., Dutta, N.N., Bhattacharyya, K.G., Adsorptive interaction of certain β-lactam antibiotics in aqueous solution: interpretation by frontier-orbital theory (2000) J. Chem. Eng. Jpn., 33, pp. 303-307Leon, S., Alemán, C., García-Alvarez, M., Muñoz-Guerra, S., Theoretical study of the conformational and electrostatic properties of C4-monosubstituted 2-azetidinones (1997) Struct. Chem., 8, pp. 39-47Andersen, C., Chennel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria (2003) Rv. Physiol. Biochem. Pharmacol., 147, pp. 122-165Masi, M., Pagès, J.-M., Pradel, E., Overexpression and purification of the three components of the Enterobacter aerogenes AcrA-AcrB-TolC multidrug efflux pump (2003) J. Chromatogr. B, 876, pp. 197-205Elkins, C.A., Nikaido, H., Chimeric analysis of AcrA function reveals the importance of Its C-terminal domain in its interaction with the AcrB multidrug efflux pump (2003) J. Bacteriol., 185, pp. 5349-5356Srikumar, R., Kon, T., Gotoh, N., Poole, K., Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain (1998) Antimicrob. Agents Chemother., 42, pp. 65-71Andersen, C., Koronakis, E., Hughes, C., Koronakis, V., An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations (2002) Mol. Microbiol., 44, pp. 1131-1139Fujihira, E., Tamura, N., Yamaguchi, A., Membrane topology of a multidrug efflux transporter AcrB, in Escherichia coli (2002) J. Biochem., 131, pp. 145-151Hamill, O.P., Martinac, B., Molecular basis of mechanotransduction in living cells (2001) Physiol. Rev., 81, pp. 685-740Rawicz, W., Olbrich, K.C., McIntosh, T., Needham, D., Evans, E., Effect of chain length and unsaturation on elasticity of lipid bilayers (2000) Biophys. J., 79, pp. 328-339Uhríkova, D., Kučerka, N., Islamov, A., Gordeliy, V., Balgavý, P., Small-angle neutron scattering study of the lipid bilayer in unilamellar dioeloylphosphatidylcholine liposomes prepared by the cholate dilution method: n-decane effect (2003) Biochim. Biophys. Acta, 1611, pp. 31-34McIntosh, L.P., Brun, E., Kay, L.E., Stereospecific assignment of the NH2 resonances from the primary amides of asparagine and glutamine side chains in isotropically labeled proteins (1997) J. Biomol. NMR, 9, pp. 306-312(2000) Chem3D Ultra 8.0, , CambridgeSoft.Com, Cambridge, MAAllinger, N.L., Conformational Analysis.130. MM2-hydrocarbon force-field utilizing v1 and V2 torsional terms (1977) J. Am. Chem. Soc., 99, pp. 8127-8134(2001) Pirouette 3.02, , Infometrix, Woodinville, WAYamanaka, H., Izawa, H., Okamoto, K., Carboxy-terminal region involved in activity of Escherichia coli TolC (2001) J. Bacteriol., 183, pp. 6961-6964Lakaye, B., Dubus, A., Joris, B., Frère, J.-M., Method for estimation of low outer membrane permeability to β-lactam antibiotics (2002) Antimicrob. Agents Chemother., 46, pp. 2901-2907Kulkarni, A.S., Hopfinger, A.J., Membrane-interaction QSAR analysis: application to the estimation of eye irritation by organic compounds (1999) Pharm. Res., 16, pp. 1245-1253Hong, X., Hopfinger, A.J., Molecular modeling of Mycobacterium tuberculosis cell wall permeability (2004) Biomacromolecules, 5, pp. 1066-1077Le Saux, A., Ruysschaert, J.-M., Goormaghtigh, E., Membrane molecule reorientation in an electric field recorded by attenuated total reflection Fourier-transform infrared spectroscopy (2001) Biophys. J., 80, pp. 324-330Dearden, J.C., Thomson, S.A., QSAR study of reversal of multidrug resistance by phenothiazines (2003) Proceedings of the 140th British Pharmaceutical Conference, , http://www.rpsgb.org.uk/events (last access on 25 August 2004). Harrogate, UK, September 15-1
    corecore