38,587 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Intelligent feature based resource selection and process planning

    Get PDF
    Lien vers la version éditeur: https://www.inderscience.com/books/index.php?action=record&rec_id=755&chapNum=3&journalID=1022&year=2010This paper presents an intelligent knowledge-based integrated manufacturing system using the STEP feature-based modeling and rule based intelligent techniques to generate suitable process plans for prismatic parts. The system carries out several stages of process planning, such as identification of the pairs of feature/tool that satisfy the required conditions, generation of the possible process plans from identified tools/machine pairs, and selection of the most interesting process plans considering the economical or timing indicators. The suitable processes plans are selected according to the acceptable range of quality, time and cost factors. Each process plan is represented in the tree format by the information items corresponding to their CNC Machine, required tools characteristics, times (machining, setup, preparatory) and the required machining sequences. The process simulation module is provided to demonstrate the different sequences of machining. After selection of suitable process plan, the G-code language used by CNC machines is generated automatically. This approach is validated through a case

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    An early-stage decision-support framework for the implementation of intelligent automation

    Get PDF
    The constant pressure on manufacturing companies to improve productivity, reduce the lead time and progress in quality requires new technological developments and adoption.The rapid development of smart technology and robotics and autonomous systems (RAS) technology has a profound impact on manufacturing automation and might determine winners and losers of the next generation’s manufacturing competition. Simultaneously, recent smart technology developments in the areas enable an automation response to new production paradigms such as mass customisation and product-lifecycle considerations in the context of Industry 4.0. New paradigms, like mass customisation, increased both the complexity of the tasks and the risk due to smart technology integration. From a manufacturing automation perspective, intelligent automation has been identified as a possible response to arising demands. The presented research aims to support the industrial uptake of intelligent automation into manufacturing businesses by quantifying risks at the early design stage and business case development. An early-stage decision-support framework for the implementation of intelligent automation in manufacturing businesses is presented in this thesis.The framework is informed by an extensive literature review, updated and verified with surveys and workshops to add to the knowledge base due to the rapid development of the associated technologies. A paradigm shift from cost to a risk-modelling perspective is proposed to provide a more flexible and generic approach applicable throughout the current technology landscape. The proposed probabilistic decision-support framework consists of three parts:• A clustering algorithm to identify the manufacturing functions in manual processes from task analysis to mitigate early-stage design uncertainties• A Bayesian Belief Network (BBN) informed by an expert elicitation via the DELPHI method, where the identified functions become the unit of analysis.• A Markov-Chain Monte-Carlo method modelling the effects of uncertainties on the critical success factors to address issues of factor interdependencies after expert elicitation.Based on the overall decision framework a toolbox was developed in Microsoft Excel. Five different case studies are used to test and validate the framework. Evaluation of the results derived from the toolbox from the industrial feedback suggests a positive validation for commercial use. The main contributions to knowledge in the presented thesis arise from the following four points:• Early-stage decision-support framework for business case evaluation of intelligent automation.• Translating manual tasks to automation function via a novel clustering approach• Application of a Markov-Chain Monte-Carlo Method to simulate correlation between decision criteria• Causal relationship among Critical Success Factors has been established from business and technical perspectives.The implications on practise might be promising. The feedback arising from the created tool was promising from the industry, and a practical realisation of the decision-support tool seems to be desired from an industrial point of view.With respect to further work, the decision-support tool might have established a ground to analyse a human task automatically for automation purposes. The established clustering mechanisms and the related attributes could be connected to sensorial data and analyse a manufacturing task autonomously without the subjective input of task analysis experts. To enable such an autonomous process, however, the psychophysiological understanding must be increased in the future.</div
    • …
    corecore