17,362 research outputs found

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Portable Dextrous Force Feedback Master for robot telemanipulation (PDMFF)

    Get PDF
    A major drawback of open loop masters is a lack of force feedback, limiting their ability to perform complex tasks such as assembly and repair. Researchers present a simple dextrous force feedback master for computer assisted telemanipulation. The device is compact, portable and can be held in the operator hand, without the need for a special joystick or console. The system is capable of both position feed forward and force feedback, using electronic position sensors and a pneumatic micro-actuator. The level of forces exercised by the pneumatic actuator is such that near rigidity may be attained. Experimental results showing good system linearity and small time lag are given

    Towards a universal end effector : the design and development of production technology's intelligent robot hand : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Engineering and Automation at Massey University

    Get PDF
    Research into robot hands for industrial use began in the early 1980s and there are now many examples of robot hands in existence. The reason for research into robot hands is that standard robot end effectors have to be designed for each application and are therefore costly. A universal end effector is needed that will be able to perform any parts handling operation or use other tools for other industrial operations. Existing robot hand research would therefore benefit from new concepts, designs and control systems. The Department of Production Technology is developing an intelligent robot hand of a novel configuration, with the ultimate aim of producing a universal end effector. The concept of PTIRH (Production Technology's Intelligent Robot Hand) is that it is a multi-fingered manipulator with a configuration of two thumbs and two fingers. Research by the author for this thesis concentrated on five major areas. First, the background research into the state of the art in robot hand research. Second, the initiation, development and analysis of the novel configuration concept of PTIRH. Third, specification, testing and analysis of air muscle actuation, including design, development and testing of a servo pneumatic control valve for the air muscles. Fourth, choice of sensors for the robot hand, including testing and analysis of two custom made air pressure sensors. Fifth, definition, design, construction, development, testing and analysis of the mechanical structure for an early prototype of PTIRH. Development of an intelligent controller for PTIRH was outside the scope of the author's research. The results of the analysis on the air muscles showed that they could be a suitable direct drive actuator for an intelligent robotic hand. The force, pressure and position sensor results indicate that the sensors could form the basis of the feedback loop for an intelligent controller. The configuration of PTIRH enables it to grasp objects with little reliance on friction. This was demonstrated with an early prototype of the robot hand, which had one finger with actuation and three other static digits, by successfully manually arranging the digits into stable grasps of various objects

    A Review of Smart Materials in Tactile Actuators for Information Delivery

    Full text link
    As the largest organ in the human body, the skin provides the important sensory channel for humans to receive external stimulations based on touch. By the information perceived through touch, people can feel and guess the properties of objects, like weight, temperature, textures, and motion, etc. In fact, those properties are nerve stimuli to our brain received by different kinds of receptors in the skin. Mechanical, electrical, and thermal stimuli can stimulate these receptors and cause different information to be conveyed through the nerves. Technologies for actuators to provide mechanical, electrical or thermal stimuli have been developed. These include static or vibrational actuation, electrostatic stimulation, focused ultrasound, and more. Smart materials, such as piezoelectric materials, carbon nanotubes, and shape memory alloys, play important roles in providing actuation for tactile sensation. This paper aims to review the background biological knowledge of human tactile sensing, to give an understanding of how we sense and interact with the world through the sense of touch, as well as the conventional and state-of-the-art technologies of tactile actuators for tactile feedback delivery

    Automation of Aircraft Engine Fuel Controls Tests: An Industrial Case Study involving PID Control of a Nozzle Emulator

    Get PDF
    The test of fuel control systems used on civil aircraft engines is performed with a network of distributed and, by design, isolated systems. The co-ordination of these test systems is performed manually by human operators in order to verify the airworthiness of a fuel control system throughout the products’ lifecycle. The main objective of this study is the automation of an existing network of systems for fuel control tests. The aspect of automation that is considered in this paper is the control of the engine nozzle emulator which is critical to determine the airworthiness of repaired fuel control systems. This system is realized using a model following PID controller design approach. The results from simulation studies and a hardware-in-the-loop test are presented. These demonstrate that this PID control structure provides the necessary level of accuracy and robustness for this engineering process

    Development of active icosahedron and its application to virtual clay modeling

    Get PDF
    We have developed an active link mechanism for physical man-machine interaction. We report an active icosahedron consisting of intelligent cylinders and its application to virtual clay modeling. Intelligent pneumatic cylinders are newly developed to realize active link mechanisms. This cylinder aims at a novel cylinder in which various sensors and control devices are built. Active link mechanisms are highly integrated and enhanced by intelligent cylinders. A control system is built for the active icosahedron. In the control system, a key element is a control program implementing drawing of a virtual model on display and controlling of active links. Virtual clays are deformed by the program based on the apex positions converted from cylinder lengths. The active icosahedron realized dynamic interaction with virtual objects in PC, showing the potential of the devices as a haptic interface.</p

    A case study of technology transfer: Rehabilitative engineering at Rancho Los Amigos Hospital

    Get PDF
    The transfer of NASA technolgy to rehabilitative applications of artificial limbs is studied. Human factors engineering activities range from orthotic manipulators to tiny dc motors and transducers to detect and transmit voluntary control signals. It is found that bicarbon implant devices are suitable for medical equipment and artificial limbs because of their biological compatibility with human body fluids and tissues
    • …
    corecore